Hoʻopilikia ka Needle Bevel Geometry i ka Amplitude Bend i ka Ultrasound-Amplified Fine Needle Biopsy

Mahalo no kou kipa ʻana iā Nature.com.ʻO ka polokalamu kele pūnaewele āu e hoʻohana nei he kākoʻo CSS kaupalena.No ka ʻike maikaʻi loa, manaʻo mākou e hoʻohana i kahi polokalamu kele pūnaewele hou (a i ʻole e hoʻopau i ke ʻano Compatibility Mode ma Internet Explorer).I kēia manawa, e hōʻoia i ke kākoʻo mau ʻana, e hāʻawi mākou i ka pūnaewele me ka ʻole o nā ʻano a me JavaScript.
Ua hōʻike ʻia i kēia manawa ʻo ka hoʻohana ʻana i ka ultrasound e hoʻonui i ka hoʻohua ʻana o nā kiko i loko o ka ultrasound-assisted fine needle aspiration (USeFNAB) i hoʻohālikelike ʻia me ka aspiration needle maikaʻi maʻamau (FNAB).I kēia lā, ʻaʻole i aʻo ʻia ka pilina ma waena o ka geometry bevel a me ka neʻe ʻana o ka piko.Ma kēia noiʻi ʻana, ua noiʻi mākou i nā waiwai o ka resonance o ka nila a me ka amplitude deflection no nā geometries bevel needle me nā lōʻihi bevel like ʻole.Ke hoʻohana nei i kahi lancet beveled 3.9 mm maʻamau, ʻo ka helu deflection power factor (DPR) i ka ea a me ka wai he 220 a me 105 µm/W, kēlā me kēia.ʻOi aku kēia ma mua o ka axisymmetric 4mm beveled tip, e hāʻawi ana i 180 a me 80 µm/W DPR i ka ea a me ka wai.Hōʻike kēia haʻawina i ke koʻikoʻi o ka pilina ma waena o ka ʻoʻoleʻa wili o ka geometry bevel i loko o ka pōʻaiapili o nā ʻano like ʻole o ka hoʻokomo ʻana, a no laila hiki ke hāʻawi i ka ʻike i nā ʻano no ka hoʻomalu ʻana i ka hana ʻoki ma hope o ka hoʻololi ʻana i ka geometry bevel needle, he mea nui.no kahi noi USeFNAB he mea koʻikoʻi.
Fine-needle aspiration biopsy (FNA) he ala ia e kiʻi ai i nā laʻana kiko no ka pathology i manaʻo ʻia1,2,3 me ka hoʻohana ʻana i ka nila.Ua hōʻike ʻia ka ʻaoʻao Franseen e hāʻawi i ka hana diagnostic kiʻekiʻe ma mua o nā ʻōlelo aʻoaʻo maʻamau lancet4 a me Menghini5.Manaʻo pū ʻia nā pali Axisymmetric (ʻo ia ka circumferential) e hoʻonui i ka hiki ke loaʻa nā hiʻohiʻona kūpono i ka histopathologically.
I ka wā o ka biopsy, ua hele ka nila i loko o nā ʻili o ka ʻili a me ka ʻiʻo e loaʻa ai ke komo i nā ʻeha kānalua.Ua hōʻike ʻia nā haʻawina hou e hiki ai i ke ultrasound ke hoʻemi i ka ikaika komo e pono ai ke komo i nā ʻiʻo palupalu7,8,9,10.Ua hōʻike ʻia ke ʻano o ka needle bevel geometry e pili ana i nā pūʻali pili o ka nila, no ka laʻana, ua hōʻike ʻia nā bevel lōʻihi e loaʻa i nā ikaika komo haʻahaʻa o ke kino11.Ma hope o ke komo ʻana o ka nila i ka ʻili o ka ʻiʻo, ʻo ia hoʻi, ma hope o ke kī ʻana, hiki i ka ikaika ʻoki o ka nila ke 75% o ka ikaika pili o ka nila me ka ʻiʻo.Ua hōʻike ʻia ma ka pae post-puncture, hoʻonui ka ultrasound (ultrasound) i ka pono o ka diagnostic soft tissue biopsy.Ua hoʻomohala ʻia nā ʻano hana biopsy iwi i hoʻonui ʻia i ka ultrasound no ka lawe ʻana i nā laʻana o nā ʻiʻo paʻakikī, akā ʻaʻohe hopena i hōʻike ʻia e hoʻomaikaʻi i ka hua biopsy.Ua hōʻoia pū kekahi mau haʻawina he nui ka hoʻoneʻe ʻana i ka mīkini i ka wā i hoʻokau ʻia i ke koʻikoʻi ultrasonic16,17,18.ʻOiai he nui nā haʻawina e pili ana i nā ikaika static axial (longitudinal) i nā pilina o ka nila-tissue19,20, aia nā haʻawina liʻiliʻi e pili ana i ka dynamics kino a me ka geometry o ka bevel nila ma lalo o ultrasonic FNAB (USeFNAB).
ʻO ka pahuhopu o kēia noiʻi ʻana, ʻo ia ka noiʻi ʻana i ka hopena o nā geometries bevel like ʻole i ka neʻe ʻana o ka piko o ka nila i loko o kahi kui i hoʻokele ʻia e ka leo kani ultrasonic.ʻO ka mea kūikawā, ua noiʻi mākou i ka hopena o ka mea hoʻoheheʻe ma ka ʻaoʻao o ka nila ma hope o ke kuʻi ʻana no nā bevel nila kuʻuna (ʻo ia hoʻi, nā nila USeFNAB no nā kumu like ʻole e like me ka aspiration koho a i ʻole ka loaʻa ʻana o ka ʻiʻo palupalu.
Ua hoʻokomo ʻia nā ʻano geometries bevel i loko o kēia haʻawina.(a) Hoʻokō ka kikoʻī Lancet me ISO 7864:201636 kahi \(\alpha\) ka bevel mua, ʻo \(\theta\) ka huina hoʻololi o ka bevel lua, a ʻo \(\phi\) ka bevel lua. kihi., ke kaʻapuni ʻana, ma nā degere (\(^\circ\)).(b) Linear asymmetrical single step chamfers (i kapa ʻia "standard" ma DIN 13097:201937) a me (c) Linear axisymmetric (circumferential) single step chamfers.
Hoʻomaka kā mākou hana ma ka hoʻohālike ʻana i ka hoʻololi ʻana i ka lōʻihi nalu e kulou ana ma ka bevel no ka lancet maʻamau, axisymmetric, a me ka asymmetric single-stage bevel geometries.A laila ua helu mākou i kahi haʻawina parametric e nānā i ka hopena o ka piʻi ʻana o ka paipu a me ka lōʻihi i ka wai mīkini o ka hoʻololi.Pono kēia e hoʻoholo i ka lōʻihi kūpono no ka hana ʻana i kahi nila prototype.Ma muli o ka simulation, ua hana ʻia nā prototypes nila a ua ʻike ʻia ko lākou ʻano resonant ma ke ana ʻana i nā coefficients noʻonoʻo uila a me ka helu ʻana i ka pono o ka hoʻololi ʻana i ka mana i ka ea, ka wai a me 10% (w/v) ballistic gelatin, kahi i hoʻoholo ʻia ai ke alapine hana. .ʻO ka hope, hoʻohana ʻia ke kiʻi kiʻi kiʻekiʻe e ana pololei i ka deflection o ka nalu kulou ma ka piko o ka nila i ka ea a me ka wai, a me ka hoʻohālikelike ʻana i ka mana uila i hāʻawi ʻia ma kēlā me kēia kihi oblique a me ka geometry o ka ratio mana deflection ( DPR) i ka mea i hoʻokomo ʻia..
E like me ka mea i hōʻike ʻia ma ke Kiʻi 2a, e hoʻohana i kahi paipu anana 21 (0.80 mm OD, 0.49 mm ID, 0.155 mm ka mānoanoa o ka paia o ka paipu, paia maʻamau) e wehewehe i ka paipu nila me ka lōʻihi o ka paipu (TL) a me ke kihi bevel (BL) e like me ISO. 9626:201621) i 316 kila kuhiliʻole (Young's modulus 205 \(\ kikokikona {GN/m}^{2}\), ka nui 8070 kg/m\(^{3}\) a me Poisson ka lākiō 0.275 ).
ʻO ka hoʻoholo ʻana i ka lōʻihi nalu a me ke kani ʻana o ke kumu hoʻohālike finite element (FEM) no ka nila a me nā kūlana palena.(a) Ka hoʻoholo ʻana o ka lōʻihi bevel (BL) a me ka lōʻihi o ka paipu (TL).(b) ʻEkolu-dimensional (3D) finite element model (FEM) me ka hoʻohana ʻana i ka ikaika kiko harmonic \(\tilde{F}_y\vec {j}\) e hoʻokuke i ka nila ma kahi kokoke, e hoʻohuli i ke kiko, a e ana i ka wikiwiki ma ka piko (\ ( \tilde {u}_y\vec {j}\), \(\tilde{v}_y\vec {j}\)) no ka helu ʻana i ka hoʻololi ʻana o ka wai mekini.Ua wehewehe ʻia ka \(\lambda _y\) ma ke ʻano he nalu nalu e pili ana i ka ikaika kū pololei \(\tilde{F}_y\vec {j}\).(c) Nā wehewehe o ke kikowaena o ka umekaumaha, ka ʻāpana kea A, a me nā manawa o ka inertia \(I_{xx}\) a me \(I_{yy}\) a puni nā koʻi x a me y.
E like me ka hoike ana ma ka fig.2b,c, no ka kukuna pau ole (palena ole) me ka apana kea A a ma ka loa hawewe i oi aku mamua o ka nui kea o ke kuola, ua hooholoia ka wikiwiki o ka mahele piko \( c_{EI }\) e 22 :
ma kahi o E ka modulus o Young (\(\text {N/m}^{2}\)), \(\omega _0 = 2\pi f_0\) ke alapine angular angular (rad/s), kahi \( f_0 \ ) ka laina laina (1/s a i ʻole Hz), ʻo I ka manawa o ka inertia o ka ʻāpana a puni ke axis o ka hoihoi\((\text {m}^{4})\), \(m'=\ ʻO ka rho _0 A\ ) ka nuipa o ka lōʻihi (kg/m), kahi \(\rho _0\) ka mānoanoa\((\text {kg/m}^{3})\) a ʻo A ke keʻa. ʻāpana o ka ʻāpana kukuna (xy plane) (\(\ kikokikona {m}^{2}\)).No ka mea, ua like ka ikaika i hoohanaia ma ko makou laana me ke kaha y-kupono, ie \(\tilde{F}_y\vec {j}\), makemake wale makou i ka manawa āpana o ka inertia a puni ke axis-x. ie \(I_{xx}\), no laila:
No ke kŘkohu mea hope (FEM), ua mana'o 'ia ka ne'e 'ana o ka harmonic ma'ema'e (m), no laila ua hō'ike 'ia ka holo wikiwiki (\(\text {m/s}^{2}\)) me he \(\partial ^2 \vec { u}/ \ hapa t^2 = -\omega ^2\vec {u}\) e like me \(\vec {u}(x, y, z, t): = u_x\vec {i} + u_y\ vec {j } + u_z\vec {k}\) he neʻe hoʻoneʻe ʻekolu manaʻo i hāʻawi ʻia i loko o nā kaha kikoʻī.Ma kahi o ka hope, e like me kona hoʻokō ʻana i ka pūʻolo polokalamu COMSOL Multiphysics (nā mana 5.4-5.5, COMSOL Inc., Massachusetts, USA), ua hāʻawi ʻia ke ʻano Lagrangian deformation hope o ke kānāwai kaulike momentum penei:
kahi \(\vec {\nabla}:= \frac{\partial}}{\partial x}\vec {i} + \frac{\partial}}{\partial y}\vec {j} + \frac{ ʻO ka ʻāpana }{\partial z}\vec {k}\) ka mea hoʻohana hoʻokaʻawale tensor, \({\underline{\sigma}}\) ʻo ia ka lua Piola-Kirchhoff stress tensor (papa ʻelua, \(\ kikokikona { N/ m}^{2}\)) a me \(\vec {F_V}:= F_{V_x}\vec {i}+ F_{V_y}\vec {j}+ F_{V_z}\vec {k} \) ʻo ia ka vector ikaika o ke kino (\(\text {N/m}^{3}\)) no kēlā me kēia leo deformed, a ʻo \(e^{j\phi }\) ʻo ia ka ʻāpana kihi vector\(\ phi \ ) ( hauʻoli).I kā mākou hihia, ʻaʻole ka ikaika o ke kino, ʻo kā mākou kumu hoʻohālike e manaʻo nei i ka linearity geometric a me kahi deformation elastic maʻemaʻe liʻiliʻi, ʻo ia hoʻi, kahi \({\underline{\varepsilon}}^{el}\) a me \({\underline ʻO {\varepsilon}}\) ke kānana elastika a me ke kānana holoʻokoʻa (ʻo ka papa ʻelua, ke ʻano ʻole).Hoʻopili ʻia ka tensor isotropic elasticity constitutive o Hooke \(\underline{\underline{C}}\) me ka hoʻohana ʻana i ka modulus Young o E (\(\text {N/m}^{2}\)) a ua hoʻoholo ʻia ka ratio o Poisson v, no laila, ʻo ia hoʻi. \(\underline{\underline{C}}:=\underline{\underline{C}}(E,v)\) (ʻo ka papa ʻehā).No laila, lilo ka helu kaumaha i \({\underline{\sigma}} := \underline{\underline{C}}:{\underline{\varepsilon}}\).
Hoʻohana ka helu ʻana i kahi mea tetrahedral 10-node me ka nui o ka mea \(\le\) o 8 µm.Hoʻohālike ʻia ka nila i loko o ka ʻūhā, a ua wehewehe ʻia ka waiwai o ka neʻe ʻana o ka mīkini (ms-1 N-1) ʻo \(|\tilde{Y}_{v_yF_y}|= |\tilde{v}_y\vec { j}|/ |\ tilde{F}_y\vec {j}|\)24, kahi o \(\tilde{v}_y\vec {j}\) ka velocity paʻakikī puka o ka mea lima a me \( \ tilde ʻO {F}_y\ vec {j }\) kahi ikaika hoʻokele paʻakikī i loaʻa ma ka hope kokoke o ka paipu, e like me ka hōʻike ʻana ma ke Kiʻi 2b.Unuhi i ka wai mīkini i loko o nā decibels (dB) me ka hoʻohana ʻana i ka waiwai nui ma ke ʻano he kuhikuhi, ʻo ia hoʻi, \(20\log _{10} (|\tilde{Y}|/ |\tilde{Y}_{max}|) \ ) .Ua lawe ʻia nā haʻawina FEM āpau ma ke alapine o 29.75 kHz.
ʻO ka hoʻolālā o ka nila (Fig. 3) i loko o kahi nila 21-gauge hypodermic maʻamau (Cat. No. 4665643, Sterican\(^\circledR\), waho anawaena 0.8 mm, lōʻihi 120 mm, AISI 304 stainless chromium-nickel kila , B. Braun Melsungen AG, Melsungen, Kelemānia) i hoʻolako ʻia me ka lima Luer Lock plastic i hana ʻia me ka polypropylene ma ka hopena kokoke a hoʻololi kūpono i ka hopena.Hoʻopili ʻia ka paipu nila i ke alakaʻi nalu e like me ka hōʻike ʻana ma ke kiʻi 3b.Ua paʻi ʻia nā alakaʻi nalu ma ka mīkini paʻi 3D kila (EOS 316L stainless steel ma ka mīkini paʻi EOS M 290 3D, 3D Formtech Oy, Jyväskylä, Finland) a laila hoʻopili ʻia i ka sensor Langevin me ka hoʻohana ʻana i nā bolts M4.ʻO ka sensor Langevin he 8 mau mea kani piezoelectric i hoʻouka ʻia ma nā ʻaoʻao ʻelua me ʻelua mau nui.
ʻO nā ʻano ʻōlelo aʻoaʻo ʻehā (kiʻi), kahi lancet hiki ke kūʻai ʻia (L) a me ʻekolu mau bevel axisymmetric i hana ʻia (AX1-3) i hōʻike ʻia e nā lōʻihi bevel (BL) o 4, 1.2 a me 0.5 mm, kēlā me kēia.(a) Ma kahi kokoke i ka piko o ka nila.(b) ʻO ka ʻike kiʻekiʻe o nā pine ʻehā i kūʻai ʻia i ke alakaʻi nalu paʻi 3D a laila hoʻopili ʻia i ka sensor Langevin me nā bolts M4.
Ua hana ʻia ʻekolu ʻaoʻao bevel axisymmetric (Fig. 3) (TAs Machine Tools Oy) me nā lōʻihi bevel (BL, e like me ka wehewehe ʻana ma Fig. 2a) o 4.0, 1.2 a me 0.5 mm, e pili ana i ka \(\approx) 2 \(^ \ pōʻai\), 7\(^\circ\) a me 18\(^\circ\).He 3.4 ± 0.017 g (mean ± sd, n = 4) ka nui o ke alakai nalu a me ka nila no nā bevels L a me AX1-3 (Quintix\(^\circledR\) 224 Design 2, Sartorius AG, Göttingen, Germany) .No ka L a me AX1-3 bevels ma ke Kiʻi 3b, ʻo ka huina o ka lōʻihi mai ka piko o ka nila a hiki i ka hopena o ka lima ʻilika he 13.7, 13.3, 13.3, a me 13.3 knm.
No nā hoʻonohonoho nila a pau, ʻo ka lōʻihi mai ka piko o ka nila a hiki i ka piko o ke alakaʻi nalu (ʻo ia hoʻi, i ka wahi weld) he 4.3 knm, a ua kuhikuhi ʻia ka paipu nila me ka ʻoki ʻana i luna (ʻo ia hoʻi, e like me ke axis Y). , e like me ka mea i hoikeia ma ke kii.c (Fig. 2).
Ua hoʻohana ʻia kahi palapala maʻamau ma MATLAB (R2019a, The MathWorks Inc., Massachusetts, USA) e holo ana ma ke kamepiula (Latitude 7490, Dell Inc., Texas, USA) no ka hoʻoulu ʻana i kahi laina sinusoidal sweep mai 25 a 35 kHz no 7 kekona, e hele ana He mea hoʻololi kikohoʻe-i-analog (DA) (Analog Discovery 2, Digilent Inc., Washington, USA) hoʻololi i ka hōʻailona analog.A laila ua hoʻonui ʻia ka hōʻailona analog \(V_0\) (0.5 Vp-p) me kahi mea hoʻolale lekiō i hoʻolaʻa ʻia (RF) (Mariachi Oy, Turku, Finland).ʻO ka hāʻule ʻana o ka voltage amplified \({V_I}\) mai ka RF amplifier me kahi impedance pukana o 50 ohms e hānai ʻia i kahi transformer i kūkulu ʻia i loko o ka hana nila me kahi impedance komo o 50 ohms.Hoʻohana ʻia nā transducers Langevin (mua a me ka hope kaumaha multilayer piezoelectric transducers) e hana i nā nalu mechanical.Hoʻolako ʻia ka mea hoʻonui RF maʻamau me kahi mika mana kaha hawewe kū ʻelua (SWR) e hoʻopaʻa i ka hanana \({V_I}\) a hōʻike ʻia i ka volta amplified \ (V_R \) ma ke ʻano analog-to-digital (AD).me ka helu hoʻohālike o 300 kHz Converter (analogue Discovery 2).Hoʻololi ʻia ka hōʻailona hōʻeuʻeu i ka hoʻomaka a ma ka hopena e pale i ka hoʻouka ʻana i ka hoʻokomo amplifier me nā transients.
Me ka hoʻohana ʻana i kahi palapala maʻamau i hoʻokō ʻia ma MATLAB, ua manaʻo ʻia ka hana pane alapine (FRF), ʻo ia hoʻi \(\tilde{H}(f)\), ma waho o ka hoʻohana ʻana i ke ʻano ana ʻana sinusoidal sweep ʻelua (Fig. 4), i manaʻo ʻia. linearity i ka manawa.ʻōnaehana ʻokoʻa.Eia kekahi, hoʻohana ʻia kahi kānana band pass 20 a 40 kHz e wehe i nā alapine makemake ʻole mai ka hōʻailona.E pili ana i ka manaʻo o nā laina hoʻouna, ma kēia hihia \(\ tilde{H}(f)\) ua like ia me ka helu hoʻohālikelike uila, ʻo ia hoʻi \(\rho _{V} \equiv {V_R}/{V_I}\ ) \) emi i \({V_R}^ 2 /{V_I}^2\ ) like \(|\rho _{V}|^2\).I nā hihia kahi e koi ʻia ai nā mana uila holoʻokoʻa, ʻike ʻia ka mana hanana \(P_I\) a me ka mana hōʻike ʻia (P_R\) mana (W) ma ka lawe ʻana i ka waiwai rms (rms) o ka volta pili, no ka laʻana.no ka laina hoʻouna me ka sinusoidal excitation \( P = {V}^2/(2Z_0)\)26, kahi \(Z_0\) ua like me 50 \(\Omega\).Hiki ke helu ʻia ka mana uila i hāʻawi ʻia i ka ukana \(P_T\) (ʻo ia hoʻi, ka mea i hoʻokomo ʻia) ma ke ʻano he \(|P_I – P_R |\) (W RMS), a me ka hoʻololi ʻana i ka mana (PTE) a me ka pakeneka ( %) hiki ke hoʻoholo i ke ʻano o ke ʻano, no laila 27:
ʻO nā alapine acicular modal \(f_{1-3}\) (kHz) a me kā lākou mau kumu hoʻoili mana like \(\text {PTE}_{1{-}3} \) a laila koho ʻia me ka hoʻohana ʻana i ka FRF.FWHM (\(\text {FWHM}_{1{-}3}\), Hz) i koho pololei mai \(\text {PTE}_{1{-}3}\), mai ka Papa 1 A aoao hookahi. Loaʻa ʻia ke kiko laina laina ma ke alapine modal i wehewehe ʻia \(f_{1-3}\).
ʻO ke ana o ka pane alapine (AFC) o nā hana nila.Hoʻohana ʻia ke ana ʻana o ka sinusoidal two-channel sweep sweep25,38 no ka loaʻa ʻana o ka hana pane alapine \(\tilde{H}(f)\) a me kāna pane hoʻoikaika H(t).ʻO \({\mathcal {F}}\) a me \({\mathcal {F}}^{-1}\) e hōʻike ana i ka hoʻololi Fourier o ka ʻoki kikohoʻe a me kona hoʻololi ʻana.\(\tilde{G}(f)\) 'o ia ho'i ka hua o nā hō'ailona 'elua ma ke kikowaena alapine, e la'a me \(\tilde{G}_{XrX}\) 'o ia ho'i ka huahana scan inverse\(\tilde{ X} r (f)\ ) a me ka hoʻokuʻu uila \(\tilde{X}(f)\) pakahi.
E like me ka mea i hōʻike ʻia ma ka Figure 5, ua hoʻolako ʻia ka pahu kiʻekiʻe kiʻekiʻe (Phantom V1612, Vision Research Inc., NJ, USA) me kahi lens macro (MP-E 65mm, \(f\)/2.8, 1-5\).(\times\), Canon Inc., Tokyo, Iapana), e hoʻopaʻa i nā ʻoki ʻoki ʻana i ka piko i ka wā o ka piʻo ʻana o ka hoʻoulu ʻana (ka alapine hoʻokahi, sinusoid mau) ma nā alapine o 27.5-30 kHz.No ka hana ʻana i ka palapala ʻāina malu, ua waiho ʻia kahi mea ʻoluʻolu o kahi LED keʻokeʻo kiʻekiʻe (helu hapa: 4052899910881, LED keʻokeʻo, 3000 K, 4150 lm, Osram Opto Semiconductors GmbH, Regensburg, Kelemānia) i waiho ʻia ma hope o ka piko o ka nila.
Nānā mua o ka hoʻonohonoho hoʻokolohua.Ana ʻia ka hohonu mai ka ʻili o ka mea waena.Hoʻopili ʻia ke ʻano o ka nila a kau ʻia ma luna o kahi pākaukau hoʻoili kaʻa.E hoʻohana i ka pahupaʻikiʻi wikiwiki me ka lens hoʻonui kiʻekiʻe (5\(\x\)) no ke ana ʻana i ka ʻaoʻao oblique angle.Aia nā ana a pau i nā millimeters.
No kēlā me kēia ʻano o ka nila bevel, ua hoʻopaʻa mākou i 300 mau papa o kahi pahupaʻiwikiō kiʻekiʻe ke ana ʻana he 128 \(\x\) 128 pixels, kēlā me kēia me ka hoʻonā spatial o 1/180 mm (\(\approx) 5 µm), me kahi ka hoʻonā manawa o 310,000 mau papa i kekona.E like me ka mea i hōʻike ʻia ma ke Kiʻi 6, ua ʻoki ʻia kēlā me kēia kiʻi (1) (2) i ʻike ʻia ka piko o ka nila ma ka laina hope (lalo) o ke kiʻi, a ua helu ʻia ka histogram o ke kiʻi (3), no laila ka Canny. hiki ke hoʻoholo i nā paepae o 1 a me 2.A laila e hoʻopili i ka ʻike ʻaoʻao Canny 28(4) me ka mea hoʻohana Sobel 3 \(\times\) 3 a helu i nā kūlana no nā pikika non-hypotenuse (kapa ʻia \(\mathbf {\times }\)) me ka ʻole o ka cavitation 300 manawa.No ka hoʻoholo ʻana i ka laula o ka hoʻololi ʻana o ka piko, e helu i ka derivative (me ka hoʻohana ʻana i ka algorithm ʻokoʻa waena) (6) a e hoʻoholo i ke kiʻi (7) i loaʻa nā koʻikoʻi kūloko (ʻo ia hoʻi ka piko) o ka deflection.Ma hope o ka nānā ʻana i ka ʻaoʻao o ka cavitation-free, ua koho ʻia ʻelua mau papa (a i ʻole ʻelua mau papa me ka manawa o ka hapalua manawa) (7) a ua ana ʻia ka deflection o ka piko (hōʻike ʻia ʻo \(\mathbf {\times } \) ).Hoʻokomo ʻia ka mea i luna ma Python (v3.8, Python Software Foundation, python.org) me ka hoʻohana ʻana i ka OpenCV Canny edge detection algorithm (v4.5.1, open source computer vision library, opencv.org).ʻO ka hope, helu ʻia ka helu mana deflection (DPR, µm/W) e like me ka ratio o ka deflection peak-to-peak i ka mana uila i hoʻouna ʻia \(P_T\) (Wrms).
Me ka hoʻohana ʻana i kahi algorithm 7-step (1-7), me ka ʻoki ʻana (1-2), ʻike maka ʻo Canny (3-4), helu ʻana, e ana i ke kūlana pixel o ka ʻaoʻao deflection me ka hoʻohana ʻana i nā ʻano o nā kiʻi i lawe ʻia mai kahi kiʻekiʻe- pahupaʻikiʻi māmā ma 310 kHz ( 5) a me kona manawa derivative (6), a, ʻo ka hope, ua ana ʻia ka laulima o ka huli ʻana o ka piko ma nā paʻa i nānā maka ʻia (7).
Ana i ka ea (22.4-22.9°C), ka wai deionized (20.8-21.5°C) a me 10% (w/v) aqueous ballistic gelatin (19.7-23.0°C , \(\text {Honeywell}^{ \ kikokikona { TM}}\) \(\text {Fluka}^{\text {TM}}\) Bovine and Pork Bone Gelatin for Type I Ballistic Analysis, Honeywell International, North Carolina, USA).Ua anaʻia ka mahana me kahi mea hoʻonui thermocouple K-type (AD595, Analog Devices Inc., MA, USA) a me kahi thermocouple K-type (Fluke 80PK-1 Bead Probe No. 3648 type-K, Fluke Corporation, Washington, USA).E hoʻohana i kahi ʻanuʻu Z-axis i hoʻohana ʻia (8MT50-100BS1-XYZ, Standa Ltd., Vilnius, Lithuania) no ke ana ʻana i ka hohonu mai ka ʻili media (i hoʻonohonoho ʻia e like me ke kumu o ka Z-axis) me ka hoʻonā ʻana o 5 µm i kēlā me kēia ʻanuʻu.
Ma muli o ka liʻiliʻi o ka nui o ka laʻana (n = 5) a ʻaʻole hiki ke manaʻo ʻia ke ʻano maʻamau, ua hoʻohana ʻia ka hōʻike hōʻike helu helu Wilcoxon ʻelua huelo ʻelua (R, v4.0.3, R Foundation for Statistical Computing, r-project.org) e hoʻohālikelike i ka nui o ka piko o ka nila no nā bevel like ʻole.ʻEkolu hoʻohālikelike i hana ʻia no kēlā me kēia slope, no laila ua hoʻohana ʻia kahi hoʻoponopono Bonferroni me kahi pae koʻikoʻi i hoʻololi ʻia o 0.017 a me kahi hapa hapa o 5%.
Kuhi ʻia i ke kiʻi 7 ma lalo.Ma ka 29.75 kHz, ʻo ka hapalua o ka hawewe nalu (\(\lambda _y/2\)) o kahi kui 21-gauge he 8 mm.E emi ana ka nalu kulou ma ka pali i kona hookokoke ana i ka piko.Aia ma ka piko \(\lambda _y/2\) he mau bevel he'e o 3, 1 a me 7 mm, no na lancet ma'amau (a), asymmetric (b) a me axisymmetric (c).No laila, 'o ia ho'i, e 'oko'a ka lancet ma ka \(\ about\) 5 mm (no ka 'ike 'ana o nā mokulele 'elua o ka lancet he kiko o 29.30), 'oko'a ka slope asymmetrical i ka 7 mm, a me ka slope like. e 1 mm.Axisymmetric slopes (e mau ana ke kikowaena o ka umekaumaha, no laila, hoʻololi maoli ka mānoanoa o ka pā ma ka pali).
Hoʻohana i ka haʻawina FEM ma 29.75 kHz a me ka hoohalike.(1) E helu i ka hoʻololi ʻana i ka hapalua nalu (\(\lambda _y/2\)) no ka lancet (a), asymmetric (b) a me axisymmetric (c) oblique geometry (e like me ke kiʻi 1a,b,c).).'O ka 'awelika \(\lambda_y/2\) no ka lancet, asymmetric, a me axisymmetric slope he 5.65, 5.17, a me 7.52 mm.E hoʻomaopopo i ka palena o ka mānoanoa o ka piko no nā bevel asymmetric a axisymmetric i \(\approx) 50 µm.
ʻO ka holo kiʻekiʻe \(|\tilde{Y}_{v_yF_y}|\) ka hui pū ʻana o ka lōʻihi paipu (TL) a me ka lōʻihi inclination (BL) (Fig. 8, 9).No ka lancet maʻamau, ʻoiai ua paʻa kona nui, ʻo ka TL maikaʻi loa ʻo \(\approx\) 29.1 mm (Fig. 8).No nā slope asymmetric a me axisymmetric (Fig. 9a, b, kēlā me kēia), ua hoʻokomo ʻia ka haʻawina FEM i ka BL mai 1 a i 7 mm, no laila, ʻo nā pae TL maikaʻi loa mai 26.9 a 28.7 mm (mau 1.8 mm) a mai 27.9 a 29.2 mm (nui. 1.3 mm).) ), kēlā me kēia.No nā slope asymmetric (Fig. 9a), ua hoʻonui ʻia ka TL maikaʻi loa i ka laina, a hiki i kahi pāpū ma BL 4 mm, a laila ua emi loa mai BL 5 a 7 mm.No nā pali axisymmetric (Fig. 9b), piʻi ka TL maikaʻi loa me ka elongation BL a hoʻopaʻa hope ma BL mai 6 a 7 mm.ʻO kahi haʻawina lōʻihi o nā pali axisymmetric (Fig. 9c) i hōʻike i kahi pūʻulu ʻokoʻa o nā TL maikaʻi loa i loaʻa ma \ (\ ma kahi o) 35.1–37.1 mm.No nā BL a pau, ʻo ka mamao ma waena o ʻelua pūʻulu o nā TL maikaʻi loa ʻo \(\approx\) 8 mm (e like me \(\lambda _y/2\)).
Ka neʻe ʻana o Lancet ma 29.75 kHz.Hoʻopili ʻia ka paipu nila ma ke alapine o 29.75 kHz, ua ana ʻia ka haʻalulu ma ka hopena a hōʻike ʻia e like me ka nui o ka neʻe ʻana o ka mīkini (dB pili i ka waiwai kiʻekiʻe) no TL 26.5-29.5 mm (0.1 mm step).
Hōʻike nā haʻawina parametric o ka FEM ma ke alapine o 29.75 kHz i ka liʻiliʻi o ka neʻe ʻana o ka neʻe ʻana o ka piko axisymmetric e nā loli i ka lōʻihi o ka paipu ma mua o kona ʻano asymmetric.ʻO ka lōʻihi o Bevel (BL) a me ka lōʻihi o ka paipu (TL) no ka asymmetric (a) a me axisymmetric (b, c) geometries bevel i nā haʻawina domain frequency me ka hoʻohana ʻana i ka FEM (hōʻike ʻia nā kūlana palena ma ke Kiʻi 2).(a, b) TL mai ka 26.5 a 29.5 mm (0.1 mm kapuai) a me BL 1-7 mm (0.5 mm kapuai).(c) Ke aʻo ʻana i ke kihi oblique axisymmetric lōʻihi me TL 25-40mm (0.05mm step) a me 0.1-7mm (0.1mm step) e hōʻike ana i ka ratio makemake ʻia \(\lambda_y/2\) Ua māʻona nā kūlana palena neʻe ʻole no ka piko.
ʻEkolu mau alapine maoli o ke kui kui \(f_{1-3}\) i māhele ʻia i nā ʻāpana ʻano haʻahaʻa, waena a me kiʻekiʻe e like me ka hōʻike ʻana ma ka Papa 1. Hōʻike ʻia ka nui PTE ma ka Figure 10 a laila nānā ʻia ma ka Figure 11. Aia ma lalo nā nā hopena no kēlā me kēia ʻāpana modal:
ʻO nā amplitudes maʻamau i hoʻopaʻa ʻia me ka hoʻohana ʻana i ka sinusoidal excitation me ke alapine swept ma kahi hohonu o 20 mm no kahi lancet (L) a me nā pali axisymmetric AX1-3 i ka lewa, ka wai a me ka gelatin.Hōʻike ʻia kahi spectrum ʻaoʻao hoʻokahi.ʻO ka pane alapine i ana ʻia (300 kHz sample rate) ua kānana haʻahaʻa a laila hoʻohaʻahaʻa ʻia e kahi helu 200 no ka loiloi modal.ʻO ka lakio hōʻailona-a-leo ʻo \(\le\) 45 dB.Hōʻike ʻia ka māhele PTE (laina kiko ʻulaʻula) i nā degere (\(^{\circ}\)).
Hōʻike ʻia ka hōʻike ʻana o ka pane ʻana o ke ʻano ma ke Kiʻi 10 (mean ± standard deviation, n = 5) no nā pali L a me AX1-3 i ka ea, wai, a me 10% gelatin (20 mm hohonu) me (luna) ʻekolu mau ʻāpana modal (haʻahaʻa. , waena, kiʻekiʻe).), a me ko lākou mau alapine alapine pili \(f_{1-3}\) (kHz), (awelika) ikehu pono\(\text {PTE}_{1{-}3 }\) hoʻohana i nā hoohalike hoʻolālā.(4) a me (lalo) ka laula piha ma ka hapalua o ke ana nui loa \(\text {FWHM}_{1{-}3}\) (Hz), pakahi.E hoʻomanaʻo i ka wā e hoʻopaʻa ai i kahi PTE haʻahaʻa, ʻo ia hoʻi, inā he AX2 slope, ua kāpae ʻia ke ana bandwidth, \(\text {FWHM}_{1}\).Manaʻo ʻia ke ʻano \(f_2\) ʻo ia ka mea kūpono loa no ka hoʻohālikelike ʻana i ka hoʻohuli ʻana o nā mokulele iclined, ʻoiai e hōʻike ana i ka pae kiʻekiʻe o ka hoʻoili mana (\(\text {PTE}_{2}\)), a hiki i 99% .
ʻO ka ʻāpana ʻano mua: \(f_1\) ʻaʻole hilinaʻi nui i ke ʻano media i hoʻokomo ʻia, akā pili i ka geometry bevel.Ke emi nei ka \(f_1\) me ka emi ʻana o ka lōʻihi bevel (27.1, 26.2 a me 25.9 kHz no AX1-3, i ka lewa).'O ka 'awelika 'āpana \(\text {PTE}_{1}\) a me \(\text {FWHM}_{1}\) he \(\approx\) 81% a me 230 Hz.\(\text {FWHM}_{1}\) ka mea kiʻekiʻe loa ma ka gelatin mai Lancet (L, 473 Hz).E hoʻomaopopo ʻaʻole hiki ke koho ʻia ka \(\text {FWHM}_{1}\) no AX2 i ka gelatin ma muli o ka haʻahaʻa haʻahaʻa o nā pane alapine i hōʻike ʻia.
ʻO ka ʻāpana ʻāpana ʻelua: \(f_2\) pili i ke ʻano o ka paʻi a me ka media bevel.Ma ka ea, ka wai a me ka gelatin, ʻo ka awelika \(f_2\) nā waiwai he 29.1, 27.9 a me 28.5 kHz, kēlā me kēia.Ua hōʻea pū ka PTE no kēia ʻāpana modal i 99%, ka mea kiʻekiʻe loa ma waena o nā pūʻulu ana a pau, me ka awelika kūloko o 84%.ʻO ka awelika ʻāpana \(\text {FWHM}_{2}\) ʻo \(\approx\) 910 Hz.
Māhele ʻaoʻao ʻekolu: \(f_3\) Aia ke alapine i ke ʻano o ka mea hoʻokomo a me ka bevel.He 32.0, 31.0 a me 31.3 kHz ma ka lewa, ka wai, a me ka gelatin ma waena o ka 'awelika \(f_3\).\(\text {PTE}_{3}\) he awelika āpana 'āina o \(\ma kahi o\) 74%, ka ha'aha'a loa o kekahi māhele.'O ka 'awelika o ka 'āpana \(\text {FWHM}_{3}\) 'o \(\kokoke\) 1085 Hz, 'oi aku ka ki'eki'e ma mua o ka 'āpana mua a me ka 'elua.
E pili ana keia i ka Fig.12 a me ka Papa 2. Ua pale ka lancet (L) i ka nui loa (me ke koʻikoʻi nui i nā ʻōlelo aʻoaʻo a pau, \(p<\) 0.017) ma ka ea a me ka wai (Fig. 12a), e loaʻa ana ka DPR kiʻekiʻe loa (a hiki i 220 µm/ W i ka lewa). 12 a me ka Papa 2. Ua pale ka lancet (L) i ka nui loa (me ke koʻikoʻi nui i nā ʻōlelo aʻoaʻo a pau, \(p<\) 0.017) ma ka ea a me ka wai (Fig. 12a), e loaʻa ana ka DPR kiʻekiʻe loa (a hiki i 220 µm/ W i ka lewa). Следующее относится к рисунку 12 и таблице 2. Ланцет (L) отклонялся больше всего (с высокой значихдоть p<\) 0,017) как в воздухе, так и в воде (рис. 12а), достигая самого высокого DPR . Hoʻopili kēia i ka Figure 12 a me ka Papa 2. ʻO Lancet (L) i hoʻohuli i ka hapa nui loa (me ke koʻikoʻi kiʻekiʻe no nā ʻōlelo aʻoaʻo a pau, \(p<\) 0.017) ma ka ea a me ka wai (Fig. 12a), e hoʻokō i ka DPR kiʻekiʻe.(i 220 μm/W i ka lewa).Kuhi ʻia ke Kiʻi 12 a me ka Papa 2 ma lalo nei.柳叶刀(L) 在空气和水中(图12a)中偏转最大(对所有尖端具有高度意意有高度意,7.高DPR (空气中高达220 µm/W)。Loaʻa iā 柳叶刀(L) ka hoʻololi kiʻekiʻe loa i ka ea a me ka wai (图12a) (对所述尖端是对尖端是是电影,\(p<\) 0.017), a loaʻa ka DPR kiʻekiʻe loa (a hiki i 220 µm/220). W i ka lewa). Ланцет (L) имеет наибольшее отклонение (весьма значимое для всех наконечников, \(p<\) 0,017) в возда 1 сидех, сидех мого высокого DPR (hiki i 220 мкм/Вт в воздухе). Loaʻa i ka Lancet (L) ka deviation nui loa (koʻikoʻi no nā ʻōlelo aʻoaʻo a pau, \(p<\) 0.017) i ka ea a me ka wai (Fig. 12a), hiki i ka DPR kiʻekiʻe loa (a hiki i 220 µm/W i ka lewa). I ka lewa, AX1 nona ka BL kiʻekiʻe aʻe, ʻoi aku ke kiʻekiʻe ma mua o AX2–3 (me ke koʻikoʻi, \(p<\) 0.017), aʻo AX3 (ʻo ia ka BL haʻahaʻa) i ʻoi aku ma mua o AX2 me kahi DPR o 190 µm/W. I ka lewa, AX1 nona ka BL kiʻekiʻe aʻe, ʻoi aku ke kiʻekiʻe ma mua o AX2–3 (me ke koʻikoʻi, \(p<\) 0.017), aʻo AX3 (ʻo ia ka BL haʻahaʻa) i ʻoi aku ma mua o AX2 me kahi DPR o 190 µm/W. В воздухе AX1 с более высоким BL отклонялся выше, чем AX2–3 (со значимостью \(p<\) 0,017), тогда злонки AX3 больше, чем AX2 с DPR 190 мкм/Вт. I ka lewa, AX1 me ka BL kiʻekiʻe aʻe ma mua o AX2–3 (me ke koʻikoʻi \(p<\) 0.017), ʻoiai ʻo AX3 (me ka BL haʻahaʻa) i ʻoi aku ma mua o AX2 me DPR 190 µm/W.在空气中,具有较高BL 的AX1 偏转高于AX2-3(具有显着性,\(p<\) 0.017),而AX3(具佉显着性,\(p<\) 0.017),而AX3(倷佉的AX3(倷佉有住DPR 为190 µm/W. I ka lewa, ʻoi aku ka kiʻekiʻe o ka deflection o AX1 me ka BL kiʻekiʻe ma mua o ka AX2-3 (ʻoi loa, \(p<\) 0.017), a ʻoi aku ka kiʻekiʻe o ka deflection o AX3 (me ka BL haʻahaʻa) ma mua o ka AX2, DPR ʻo 190. µm/W. В воздухе AX1 с более высоким BL имеет большее отклонение, чем AX2-3 (значимо, \(p<\) 0,017), тогда (мскикт AX3) льшее отклонение, чем AX2 с DPR 190 мкм/Вт. I ka lewa, AX1 me ka BL kiʻekiʻe he ʻoi aku ka nui o ka deviation ma mua o AX2-3 (koʻikoʻi, \(p<\) 0.017), ʻoiai ʻo AX3 (me ka BL haʻahaʻa loa) ʻoi aku ka nui o ka deviation ma mua o AX2 me DPR o 190 μm/W. I loko o ka wai ma 20 mm, ʻaʻohe ʻokoʻa koʻikoʻi (\(p>\) 0.017) i loaʻa i ka deflection a me PTE no AX1–3. I loko o ka wai ma 20 mm, ʻaʻohe ʻokoʻa koʻikoʻi (\(p>\) 0.017) i loaʻa i ka deflection a me PTE no AX1–3. В воде на глубине 20 мм достоверных различий (\(p>\) 0,017) по прогибу и ФТР для AX1–3 не обнаружено. I loko o ka wai ma kahi hohonu o 20 mm, ua ʻike ʻia nā ʻokoʻa nui (\(p>\) 0.017) i ka deflection a me FTR no AX1-3.在20 mm 的水中,AX1-3 的挠度和PTE 没有显着差异(\(p>\) 0.017). Ma 20 mm o ka wai, ʻaʻohe ʻokoʻa nui ma waena o AX1-3 a me PTE (\(p>\) 0.017). На глубине 20 мм прогиб и PTE AX1-3 существенно не отличались (\(p>\) 0,017). Ma ka hohonu o 20 mm ʻaʻole ʻokoʻa ka deflection a me PTE AX1-3 (\(p>\) 0.017).ʻO nā kiʻekiʻe o ka PTE i loko o ka wai (90.2-98.4%) ʻoi aku ka kiʻekiʻe ma mua o ka ea (56-77.5%) (Fig. 12c), a ua ʻike ʻia ke ʻano o ka cavitation i ka wā o ka hoʻokolohua ʻana i ka wai (Fig. 13, ʻike pū kekahi. ʻike).
ʻO nā ana amplitude piko piko (mean ± deviation maʻamau, n = 5) no nā chamfers L a me AX1-3 i ka ea a me ka wai (hohonu 20 mm) i hōʻike i ka hopena o ka hoʻololi ʻana i ka geometry chamfer.Loaʻa nā ana me ka hoʻohana ʻana i ka hoʻouluulu sinusoidal hoʻomau hoʻokahi alapine.(a) Wehe ʻekahi kiʻekiʻe (\(u_y\vec {j}\)) ma ka piko, ana ʻia ma (b) ko lākou mau alapine ʻano like ʻole \(f_2\).(c) Ka pono o ka hoʻoili mana (PTE, rms, %) ma ke ʻano he hoohalike.(4) a me (d) Ka helu mana hoʻokaʻawale (DPR, µm/W) i helu ʻia ma ke ʻano he kaʻe a me ka mana hoʻouna \(P_T\) (Wrms).
ʻO ke aka maʻamau o kahi pahupaʻikiʻi wikiwiki e hōʻike ana i ka huina holoʻokoʻa o ka piko lancet (nā laina kiko ʻōmaʻomaʻo a ʻulaʻula) o ka lancet (L) a me ka piko axisymmetric (AX1-3) i loko o ka wai (hohonu 20mm), hapalua pōʻaiapuni, kaʻa pinepine. \(f_2\) (ka la'ana 310 kHz la'ana).He 128×128 pixels ka nui o ke kiʻi kiʻi ʻāhinahina me ka nui pika o \(\kokoke) 5 µm.Hiki ke loaʻa ke wikiō ma ka ʻike hou aku.
No laila, ua hoʻohālike mākou i ka hoʻololi ʻana o ka nalu nalu (Fig. 7) a helu i ka neʻe mechanical no ka hoʻololi ʻana no ka hui ʻana o ka lanceolate maʻamau, asymmetric, a me axial o ka lōʻihi a me ka bevel (Fig. 8, 9).Geometry beveled like ʻole.Ma muli o ka mea hope, ua manaʻo mākou ʻo ka mamao tip-to-weld maikaʻi loa he 43 mm (a i ʻole \(\approx\) 2.75\(\lambda_y\) ma 29.75 kHz) e like me ka mea i hōʻike ʻia ma ke Kiʻi 5, a hana ʻia ʻekolu bevels axisymmetric me nā lōʻihi bevel ʻokoʻa.A laila hōʻike mākou i kā lākou mau pane alapine i hoʻohālikelike ʻia me nā lancets maʻamau i ka ea, ka wai, a me 10% (w/v) ballistic gelatin (Nā Kiʻi 10, 11) a hoʻoholo i ka hihia maikaʻi loa no ka hoʻohālikelike ʻana i ke ʻano hoʻoheheʻe tilt.ʻO ka hope, ua ana mākou i ka hoʻololi ʻana o ka piko ma ke kuʻi ʻana i ka nalu i ka ea a me ka wai ma kahi hohonu o 20 mm a helu i ka pono o ka hoʻololi ʻana i ka mana (PTE, %) a me ke kumu mana deflection (DPR, µm/W) o ka mea i hoʻopaʻa ʻia no kēlā me kēia hiʻi.ʻano (Fig. 12).
Hōʻike nā hualoaʻa e pili ana ka axis tilt o ka geometry i ka amplitude deviation o ke axis tip.ʻO ka lancet ka curvature kiʻekiʻe loa a me ka DPR kiʻekiʻe hoʻi i hoʻohālikelike ʻia me ka bevel axisymmetric, aʻo ka bevel axisymmetric he liʻiliʻi mean deviation (Fig. 12). ʻO ke axi-symmetric 4 mm bevel (AX1) loaʻa ka lōʻihi o ka bevel lōʻihi, ua loaʻa i ka helu helu kiʻekiʻe kiʻekiʻe deflection i ka lewa (\(p <0.017\), Papa 2), i ka hoʻohālikelike ʻana me nā nila axi-symmetric ʻē aʻe (AX2–3), akā, ʻaʻohe ʻokoʻa nui i ʻike ʻia, ke kau ʻia ka nila i loko o ka wai. ʻO ke axi-symmetric 4 mm bevel (AX1) loaʻa ka lōʻihi o ka bevel lōʻihi, ua loaʻa i ka helu helu kiʻekiʻe kiʻekiʻe deflection i ka lewa (\(p <0.017\), Papa 2), i ka hoʻohālikelike ʻana me nā nila axi-symmetric ʻē aʻe (AX2–3), akā, ʻaʻohe ʻokoʻa nui i ʻike ʻia, ke kau ʻia ka nila i loko o ka wai. Осесимметричный скос 4 мм (AX1), имеющий наибольшую длину скоса, достиг статистически значимого нагибольтш <0,017\), таблица 2) по сравнению с другими осесимметричными иглами (AX2–3). Axisymmetric bevel 4 mm (AX1), loaʻa ka lōʻihi o ka bevel lōʻihi, ua loaʻa i ka helu helu ʻoi aku ka nui o ka neʻe ʻana i ka ea (\(p <0.017\), Papa 2) i hoʻohālikelike ʻia me nā nila axisymmetric ʻē aʻe (AX2–3).akā, ʻaʻole i ʻike ʻia nā ʻokoʻa koʻikoʻi i ke kau ʻana i ka nila i loko o ka wai.与其他轴对称针(AX2-3) 相比,具有最长斜角长度的轴对称4 mm 斜角(AX1) 在空气玭中中文最高偏转(\(p < 0.017\),表2),但当将针头放入水中时,没有观察到显着差异。 Ke hoʻohālikelike ʻia me nā nila axially symmetric ʻē aʻe (AX2-3), ʻo ia ka lōʻihi oblique angle o 4 mm axially symmetrical (AX1) i ka lewa, a ua loaʻa i ka helu deflection nui loa (\(p <0.017\), Papa 2) , akā i ka wā i hoʻokomo ʻia ai ka nila i loko o ka wai, ʻaʻohe ʻokoʻa nui i ʻike ʻia. Осесимметричный скос 4 мм (AX1) внению с другими осесимметричными иглами (AX2-3) (\(p < 0,017\), таблица 2), no существенной разницы не было. ʻO ka axisymmetric slope me ka lōʻihi slope 4 mm (AX1) i hāʻawi i ka helu ʻana i ka nui o ka nui o ke ea i hoʻohālikelike ʻia me nā pali axisymmetric ʻē aʻe (AX2-3) (\(p <0.017\), Papa 2), akā ʻaʻohe ʻokoʻa nui.ʻike ʻia ke kau ʻia ka nila i loko o ka wai.No laila, ʻaʻohe pōmaikaʻi ʻoi aku ka lōʻihi o ka bevel e pili ana i ka deflection piko piko.Ma ka noʻonoʻo ʻana i kēia, ua ʻike ʻia ʻo ka geometry slope, i noiʻi ʻia i loko o kēia haʻawina, ʻoi aku ka nui o ka mana i ka amplitude deflection ma mua o ka lōʻihi slope.Hiki ke pili kēia i ka ʻoʻoleʻa kulou, no ka laʻana, e pili ana i ka mea i hoʻopiʻi ʻia a me ka mānoanoa holoʻokoʻa o ka nila hana.
Ma nā haʻawina hoʻokolohua, pili ka nui o ka nalu flexural i hōʻike ʻia e nā kūlana palena o ka piko.I ka wā i hoʻokomo ʻia ai ka piko o ka nila i loko o ka wai a me ka gelatin, \(\text {PTE}_{2}\) i 'awelika \(\approx\) 95% a me \(\text {PTE}_{2}\) i 'awelika i nā waiwai. ʻo 73% a me 77% (\text {PTE}_{1}\) a me \(\text {PTE}_{3}\), pakahi (Fig. 11).Hōʻike kēia i ka hoʻololi kiʻekiʻe o ka ikehu acoustic i ka mea hoʻolei ʻana (e laʻa, ka wai a i ʻole gelatin) i loaʻa ma \(f_2\).Ua ʻike ʻia ke ʻano like ma kahi noiʻi mua me ka hoʻohana ʻana i nā ʻōnaehana mea maʻalahi ma nā alapine o 41-43 kHz, kahi i hōʻike ai nā mea kākau i ka coefficient noʻonoʻo voli e pili ana me ka modulus mechanical o ka medium intercalated.ʻO ka hohonu o ke komo ʻana32 a me nā waiwai mechanical o ka ʻiʻo e hāʻawi i kahi haʻahaʻa mechanical ma ka nila a no laila ke manaʻo ʻia e hoʻohuli i ka ʻano resonant o ka UZeFNAB.No laila, hiki ke hoʻohana ʻia nā algorithms tracking resonance e like me 17, 18, 33 e hoʻonui i ka mana o ke kani i hāʻawi ʻia ma o ka stylus.
Hōʻike ka hoʻohālike ʻana i ka lōʻihi hawewe piko (Fig. 7) he ʻoi aku ka ʻoi aku o ka ʻoʻoleʻa o ka axisymmetric (ʻo ia hoʻi, ʻoi aku ke kiʻekiʻe o ka piʻo ʻana) ma ka piko ma mua o ka lancet a me ka bevel asymmetric.Loaʻa mai (1) a me ka hoʻohana ʻana i ka pilina velocity-frequency i ʻike ʻia, manaʻo mākou i ka piʻo ʻana o ka ʻoʻoleʻa o ka lancet, asymmetric a me axisymmetric tips e like me nā pali \(\ ma kahi o) 200, 20 a me 1500 MPa.Pili kēia me (\lambda _y\) 5.3, 1.7 a me 14.2 mm ma 29.75 kHz, (Fig. 7a–c).E noʻonoʻo ana i ka palekana lapaʻau o ke kaʻina hana USeFNAB, pono e loiloi ʻia ka mana o ka geometry i ka ʻoʻoleʻa o ka hoʻolālā bevel34.
ʻO ke aʻo ʻana i nā ʻāpana o ka bevel a me ka lōʻihi o ka paipu (Fig. 9) i hōʻike ʻia i ka pae TL maikaʻi loa no ka asymmetric (1.8 mm) ʻoi aku ka kiʻekiʻe ma mua o ka bevel axisymmetric (1.3 mm).Eia kekahi, o ka mobility plateau mai 4 a 4.5 mm a mai 6 a 7 mm no ka asymmetric a me axisymmetric tilt, i kēlā me kēia (Fig. 9a, b).Hōʻike ʻia ka pili pono o kēia ʻike ma ka hana ʻana i ka ʻae ʻana, no ka laʻana, ʻo kahi haʻahaʻa haʻahaʻa o ka TL maikaʻi loa e hōʻike ana i ka pono o ka lōʻihi kiʻekiʻe.I ka manawa like, hāʻawi ka paepae hoʻohua i ka hoʻomanawanui ʻoi aku ka nui o ke koho ʻana i ka lōʻihi o ka slope ma kahi alapine i hāʻawi ʻia me ka ʻole o ka hopena nui i ka hua.
Aia ka haʻawina i nā palena ma lalo nei.ʻO ke ana pololei ʻana i ka neʻe ʻana o ka nila me ka ʻike maka a me ke kiʻi kiʻi kiʻekiʻe (Figure 12) ʻo ia hoʻi, ua kaupalena ʻia mākou i nā pāpaʻi optically e like me ka ea a me ka wai.Makemake mākou e kuhikuhi ʻaʻole mākou i hoʻohana i nā hoʻokolohua no ka hoʻāʻo ʻana i ka mobility transfer simulated a me ka hope, akā ua hoʻohana i nā haʻawina FEM e hoʻoholo ai i ka lōʻihi maikaʻi loa o ka nila i hana ʻia.Mai ka manaʻo o nā palena kūpono, ʻo ka lōʻihi o ka lancet mai ka piko a i ka lima he 0.4 knm ka lōʻihi ma mua o nā nila ʻē aʻe (AX1-3), ʻike i ka fig.3b.Ua hoʻopili paha kēia i ka pane modal o ka ʻōnaehana acicular.Eia kekahi, ʻo ke ʻano a me ka nui o ka nalu alakaʻi alakaʻi solder (e ʻike i ke Kiʻi 3) hiki ke hoʻopili i ka impedance mechanical o ka hoʻolālā pin, e hopena i nā hewa i ka mechanical impedance a me ke kulou ʻana.
ʻO ka mea hope loa, ua hōʻike hoʻokolohua mākou e pili ana ka geometry bevel i ka nui o ka deflection ma USeFNAB.I nā kūlana i hiki ai i kahi amplitude deflection kiʻekiʻe ke loaʻa ka hopena maikaʻi i ka hopena o ka nila ma ka ʻiʻo, no ka laʻana, ʻoki ʻana i ka pono ma hope o ka puncture, hiki ke ʻōlelo ʻia kahi lancet maʻamau no USeFNAB, no ka mea, hāʻawi ʻo ia i ka amplitude deflection nui loa i ka mālama ʻana i ka rigidity. ma ka piko o ka hoʻolālā.Eia kekahi, ua hōʻike ʻia kahi noiʻi hou e hiki ke hoʻonui i ka hopena o ka piko e like me ka cavitation, hiki ke kōkua i ka hoʻomohala ʻana i nā noi no nā hana ʻokiʻoki liʻiliʻi.Ma muli o ka hoʻonui ʻana i ka mana acoustic holoʻokoʻa ua hōʻike ʻia e hoʻonui i ka hua biopsy mai USeFNAB13, pono nā noiʻi quantitative hou o ka hāʻawi ʻana a me ka maikaʻi no ka loiloi i ka pono kikoʻī kikoʻī o ka geometry needle i aʻo ʻia.
Frable, WJ Fine needle aspiration biopsy: he loiloi.Humph.Maʻi.14:9-28.https://doi.org/10.1016/s0046-8177(83)80042-2 (1983).


Ka manawa hoʻouna: Oct-13-2022
WhatsApp kamaʻilio pūnaewele!