Needle Bevel Geometry cuam tshuam khoov Amplitude hauv Ultrasound-Amplified Fine Needle Biopsy

Ua tsaug rau koj tuaj xyuas Nature.com.Qhov browser version koj siv tau txwv CSS kev txhawb nqa.Rau qhov kev paub zoo tshaj plaws, peb xav kom koj siv qhov browser tshiab (lossis lov tes taw Compatibility Hom hauv Internet Explorer).Nyob rau lub sijhawm no, txhawm rau ua kom muaj kev txhawb nqa txuas ntxiv, peb yuav ua rau lub xaib tsis muaj qauv thiab JavaScript.
Nws tsis ntev los no tau pom tias kev siv ultrasound nce cov ntaub so ntswg tawm los ntawm ultrasound-pab zoo koob aspiration (USeFNAB) piv rau cov pa zoo koob aspiration (FNAB).Txog rau tam sim no, kev sib raug zoo ntawm bevel geometry thiab cov lus taw qhia tsis tau kawm kom ntxaws.Hauv txoj kev tshawb no, peb tau tshawb xyuas cov khoom ntawm rab koob resonance thiab deflection amplitude rau ntau yam koob bevel geometries nrog txawv bevel lengths.Siv cov pa 3.9 hli beveled lancet, lub taub hau deflection fais fab (DPR) hauv huab cua thiab dej yog 220 thiab 105 µm / W, raws li.Qhov no yog siab tshaj qhov axisymmetric 4mm beveled tip, muab 180 thiab 80 µm / W DPR nyob rau hauv huab cua thiab dej, feem.Txoj kev tshawb no qhia txog qhov tseem ceeb ntawm kev sib raug zoo ntawm kev khoov nruj ntawm lub bevel geometry nyob rau hauv cov ntsiab lus ntawm kev sib txawv ntawm kev ntxig, thiab yog li ntawd yuav muab kev nkag siab rau hauv cov txheej txheem rau kev tswj kev txiav tom qab txiav txiav los ntawm kev hloov cov koob bevel geometry, uas yog ib qho tseem ceeb.rau daim ntawv thov USeFNAB yog qhov tseem ceeb.
Fine-needle aspiration biopsy (FNA) yog ib txoj hauv kev tau txais cov ntaub so ntswg kuaj rau qhov xav tias muaj kab mob 1,2,3 siv rab koob.Cov lus qhia Franseen tau pom tias muab kev kuaj mob ntau dua li cov lus qhia lancet4 thiab Menghini5.Axisymmetric (ie circumferential) slopes kuj tau pom zoo kom ua rau muaj qhov tshwm sim ntawm histopathologically txaus qauv.
Thaum lub sij hawm biopsy, ib rab koob yog dhau los ntawm cov khaubncaws sab nraud povtseg ntawm daim tawv nqaij thiab cov ntaub so ntswg kom nkag tau mus rau qhov tsis txaus ntseeg.Cov kev tshawb fawb tsis ntev los no tau pom tias ultrasound tuaj yeem txo qhov kev nkag mus rau hauv cov ntaub so ntswg 7,8,9,10.Needle bevel geometry tau pom tias muaj kev cuam tshuam rau rab koob sib cuam tshuam, piv txwv li, ntev bevels tau pom tias muaj cov ntaub so ntswg nkag mus rau qis dua 11.Tom qab rab koob tau nkag mus rau saum npoo ntawm cov ntaub so ntswg, piv txwv li, tom qab puncture, txiav quab yuam ntawm rab koob tuaj yeem yog 75% ntawm kev sib cuam tshuam ntawm rab koob nrog cov ntaub so ntswg12.Nws tau raug pom tias nyob rau hauv lub post-puncture theem, ultrasound (ultrasound) tsub kom cov efficiency ntawm cov nqaij mos biopsy.Lwm cov txheej txheem ultrasound-txhim kho pob txha biopsy tau tsim los rau kev kuaj cov ntaub so ntswg nyuaj, tab sis tsis muaj cov txiaj ntsig tau tshaj tawm tias txhim kho biopsy yield.Ntau cov kev tshawb fawb tseem tau lees paub tias kev hloov pauv hloov pauv tau nce thaum raug ultrasonic kev nyuaj siab16,17,18.Thaum muaj ntau yam kev tshawb fawb ntawm axial (longitudinal) static rog hauv koob-cov ntaub so ntswg kev sib cuam tshuam19,20, muaj cov kev tshawb fawb txwv ntawm lub cev tsis muaj zog thiab geometry ntawm koob bevel nyob rau hauv ultrasonic FNAB (USeFNAB).
Lub hom phiaj ntawm txoj kev tshawb no yog los tshawb xyuas cov txiaj ntsig ntawm qhov sib txawv bevel geometries ntawm kev txav ntawm rab koob hauv ib rab koob uas tau tsav los ntawm ultrasonic dabtsi yog khoov.Tshwj xeeb, peb tau tshawb xyuas cov txiaj ntsig ntawm kev txhaj tshuaj nruab nrab ntawm rab koob tip deflection tom qab puncture rau ib txwm koob bevels (piv txwv li, USeFNAB koob rau ntau lub hom phiaj xws li xaiv aspiration los yog muag cov ntaub so ntswg.
Ntau yam bevel geometry tau suav nrog hauv txoj kev tshawb no.(a) Lancet specification ua raws li ISO 7864: 201636 qhov twg \(\alpha\) yog thawj bevel, \(\theta\) yog lub kaum sab xis ntawm lub thib ob bevel, thiab \(\phi\) yog lub thib ob bevel lub kaum sab xis., thaum tig, hauv degrees (\(^\circ\)).(b) Linear asymmetrical single step chamfers (hu ua "standard" in DIN 13097:201937) thiab (c) Linear axisymmetric (circumferential) single step chamfers.
Peb txoj hauv kev pib los ntawm kev ua qauv kev hloov pauv hauv kev khoov wavelength raws lub bevel rau cov pa lancet, axisymmetric, thiab asymmetric ib-theem bevel geometries.Peb mam li xam cov kev tshawb fawb parametric los tshuaj xyuas cov nyhuv ntawm cov yeeb nkab txoj kab nqes thiab ntev ntawm cov tshuab fluidity ntawm kev hloov.Qhov no yog qhov tsim nyog los txiav txim siab qhov ntev ntev rau kev ua tus qauv koob.Raws li kev simulation, rab koob prototypes tau tsim thiab lawv tus cwj pwm resonant tau sim ntsuas qhov ntsuas qhov ntsuas qhov ntsuas hluav taws xob thiab ntsuas lub zog hloov hluav taws xob hauv huab cua, dej thiab 10% (w / v) ballistic gelatin, los ntawm kev ua haujlwm zaus tau txiav txim siab. .Thaum kawg, high-speed imaging yog siv los ntsuas qhov deflection ntawm bending yoj ntawm qhov kawg ntawm rab koob hauv huab cua thiab dej, nrog rau kev kwv yees lub zog hluav taws xob xa tawm ntawm txhua lub kaum oblique thiab cov geometry ntawm deflection zog piv ( DPR) rau qhov nruab nrab txhaj tshuaj..
Raws li pom hauv daim duab 2a, siv 21 gauge raj (0.80 mm OD, 0.49 mm ID, raj phab ntsa thickness 0.155 mm, txheem phab ntsa) los txhais cov koob raj nrog lub raj ntev (TL) thiab lub kaum sab xis (BL) raws li ISO 9626: 201621) hauv 316 stainless hlau (Young's modulus 205 \(\text {GN/m}^{2}\), ceev 8070 kg/m\(^{3}\) thiab Poisson tus piv 0.275).
Kev txiav txim siab ntawm qhov khoov wavelength thiab tuning ntawm finite element qauv (FEM) rau koob thiab ciam teb tej yam kev mob.(a) Kev txiav txim siab ntawm bevel length (BL) thiab kav ntev (TL).(b) Peb-dimensional (3D) finite element qauv (FEM) siv qhov sib haum xeeb taw tes quab yuam \(\tilde{F}_y\vec {j}\) tsav rab koob ze ze, deflect qhov taw tes, thiab ntsuas qhov nrawm ntawm tip (\ ( \tilde {u}_y\vec {j}\), \(\tilde{v}_y\vec {j}\))) los laij cov hloov pauv ntawm mechanical fluidity.\(\lambda _y\) txhais tau tias yog bending wavelength txheeb ze rau lub zog ntsug \(\tilde{F}_y\vec {j}\).(c) Cov ntsiab lus ntawm qhov nruab nrab ntawm lub ntiajteb txawj nqus, qhov chaw hla ntu A, thiab lub sijhawm ntawm inertia \(I_{xx}\) thiab \(I_{yy}\) nyob ib ncig ntawm x thiab y axes, raws li.
Raws li qhia hauv daim duab.2b, c, rau ib qho infinite (infinite) beam nrog cross-sectional cheeb tsam A thiab ntawm ib tug wavelength ntau tshaj lub beam cross-sectional loj, lub bent (los yog bent) theem tshaj tawm \(c_{EI }\) yog txiav txim los ntawm 22 :
qhov twg E yog Young's modulus (\(\text {N/m}^{2}\)), \(\omega _0 = 2\pi f_0\) is the excitation angular zaus (rad/s), where \( f_0 \ ) yog linear zaus (1 / s los yog Hz), Kuv yog lub sij hawm ntawm inertia ntawm cheeb tsam nyob ib ncig ntawm lub axis ntawm paj \((\text {m}^{4})\), \(m' = \ rho _0 A\ ) yog qhov hnyav ntawm chav tsev ntev (kg/m), qhov twg \(\rho _0\) yog qhov ceev\((\text {kg/m}^{3})\) thiab A yog tus ntoo khaub lig seem ntawm kab teeb (xy plane) (\(\text {m}^{2}\)).Txij li thaum lub zog siv nyob rau hauv peb piv txwv yog parallel mus rau ntsug y-axis, piv txwv li \(\tilde{F}_y\vec {j}\), peb tsuas yog txaus siab rau lub regional lub sij hawm ntawm inertia nyob ib ncig ntawm kab rov tav x-axis, ie \(I_{xx}\), so:
Rau cov qauv finite element (FEM), qhov kev sib haum xeeb dawb huv (m) yog assumed, yog li qhov acceleration (\(\text {m/s}^{2}\)) yog qhia li \(\partial ^2 \vec { u}/ \ partial t^2 = -\omega ^2\vec {u}\) as \(\vec {u}(x, y, z, t): = u_x\vec {i} + u_y\ vec {j } + u_z\vec {k}\) yog peb-dimensional displacement vector muab nyob rau hauv spatial coordinates.Hloov chaw tom kawg, raws li nws qhov kev siv hauv COMSOL Multiphysics software pob (versions 5.4-5.5, COMSOL Inc., Massachusetts, USA), finite deformation Lagrangian daim ntawv ntawm lub zog sib npaug txoj cai yog muab raws li hauv qab no:
where \(\vec {\nabla}:= \frac{\partial}}{\partial x}\vec {i} + \frac{\partial}}{\partial y}\vec {j} + \frac{ \partial }{\partial z}\vec {k}\) is the tensor divergence operator, \({\underline{\sigma}}\) is the second Piola-Kirchhoff stress tensor (second order, \(\text { N/ m}^{2}\)) and \(\vec {F_V}:= F_{V_x}\vec {i}+ F_{V_y}\vec {j}+ F_{V_z}\vec {k} \) yog lub cev quab yuam vector (\(\text {N/m}^{3}\)) rau txhua lub ntim deformed, thiab \(e^{j\phi }\) yog theem kaum vector\(\phi \) (zoo siab).Nyob rau hauv peb cov ntaub ntawv, lub ntim quab yuam ntawm lub cev yog xoom, peb cov qauv assumes geometric linearity thiab ib tug me me purely elastic deformation, piv txwv li, qhov twg \({\underline{\varepsilon}}^{el}\) thiab \({\underline. {\varepsilon}}\) yog elastic strain thiab tag nrho strain (thib ob xaj, dimensionless), feem.Hooke's constitutive isotropic elasticity tensor \(\underline{\underline{C}}\) yog xam siv Young's modulus E (\(\text {N/m}^{2}\)) thiab Poisson tus piv v yog txiav txim siab, yog li ntawd \(\underline{\underline{C}}:=\underline{\underline{C}}(E,v)\) (fourth order).Yog li qhov kev ntsuas kev ntxhov siab dhau los ua \({\underline{\sigma}} := \underline{\underline{C}}:\underline{\varepsilon}}\).
Kev suav siv 10-node tetrahedral element nrog lub ntsiab loj \(\le\) ntawm 8 µm.Cov koob yog ua qauv hauv lub tshuab nqus tsev, thiab tus nqi ntawm qhov hloov pauv hloov tshuab (ms-1 N-1) txhais tau tias yog \(|\tilde{Y}_{v_yF_y}|= |\tilde{v}_y\vec { j}|/ |\ tilde{F}_y\vec {j}|\)24, where \(\tilde{v}_y\vec {j}\) yog cov zis complex tshaj tawm ntawm tes thiab \(\tilde {F}_y\ vec {j }\) yog lub zog tsav nyuaj nyob rau ntawm qhov kawg ntawm lub raj, raws li pom hauv daim duab 2b.Txhais cov tshuab fluidity hauv decibels (dB) siv tus nqi siab tshaj plaws raws li kev siv, piv txwv li \(20\log _{10} (|\tilde{Y}|/ |\tilde{Y}_{max}|) \) .Tag nrho cov kev tshawb fawb FEM tau ua tiav ntawm qhov zaus ntawm 29.75 kHz.
Tus qauv tsim ntawm rab koob (Daim duab 3) muaj cov pa 21-gauge hypodermic koob (Cat. No. 4665643, Sterican\(^\circledR\), sab nraud txoj kab uas hla 0.8 hli, ntev 120 hli, AISI 304 stainless chromium-nickel steel, B. Braun Melsungen AG, Melsungen, Lub teb chaws Yelemees) nruab nrog lub tes tsho yas Luer Lock ua los ntawm polypropylene ntawm qhov kawg ntawm qhov kawg thiab tsim nyog hloov kho thaum kawg.Lub koob raj yog soldered rau lub waveguide raws li qhia nyob rau hauv daim duab 3b.Cov waveguides tau luam tawm ntawm lub tshuab luam ntawv stainless hlau 3D (EOS 316L stainless hlau ntawm EOS M 290 3D tshuab luam ntawv, 3D Formtech Oy, Jyväskylä, Finland) thiab tom qab ntawd txuas rau Langevin sensor siv M4 bolts.Lub Langevin sensor muaj 8 lub nplhaib piezoelectric loaded ntawm ob qhov kawg nrog ob pawg.
Plaub hom lus qhia (daim duab), ib lub lag luam muaj lancet (L) thiab peb tsim axisymmetric ib-theem bevels (AX1-3) yog tus cwj pwm los ntawm bevel lengths (BL) ntawm 4, 1.2 thiab 0.5 hli, feem.(a) Close-up ntawm lub tiav koob taub hau.(b) Sab saum toj saib ntawm plaub tus pins soldered rau 3D luam tawm waveguide thiab txuas nrog Langevin sensor nrog M4 bolts.
Peb axisymmetric bevel tswv yim (Fig. 3) tau tsim (TAs Tshuab cuab yeej Oy) nrog bevel lengths (BL, raws li tau teev tseg nyob rau hauv daim duab. 2a) ntawm 4.0, 1.2 thiab 0.5 hli, sib xws rau \(\approx) 2 \(^ \ circ\), 7\(^\circ\) and 18\(^\circ\) .Qhov loj ntawm lub waveguide thiab koob yog 3.4 ± 0.017 g (txhais tau tias ± sd, n = 4) rau bevels L thiab AX1-3, raws li (Quintix\(^\circledR\) 224 Tsim 2, Sartorius AG, Göttingen, Lub teb chaws Yelemees) .Rau L thiab AX1-3 bevels nyob rau hauv daim duab 3b, tag nrho ntev ntawm qhov kawg ntawm rab koob mus rau qhov kawg ntawm lub tes tsho yas yog 13.7, 13.3, 13.3, thiab 13.3 cm, raws li.
Rau tag nrho cov kev teeb tsa koob, qhov ntev ntawm qhov kawg ntawm rab koob mus rau qhov kawg ntawm lub waveguide (piv txwv li, mus rau qhov chaw weld) yog 4.3 cm, thiab lub koob raj yog taw qhia nrog kev txiav upwards (piv txwv li, parallel rau Y axis) , raws li qhia hauv daim duab.c (Daim duab 2).
Ib tsab ntawv kev cai hauv MATLAB (R2019a, The MathWorks Inc., Massachusetts, USA) uas khiav ntawm lub khoos phis tawj (Latitude 7490, Dell Inc., Texas, USA) tau siv los tsim cov kab tawm sinusoidal cheb ntawm 25 txog 35 kHz rau 7 vib nas this, dhau A digital-to-analog (DA) converter (Analog Discovery 2, Digilent Inc., Washington, USA) hloov mus rau lub teeb liab analog.Lub teeb liab analog \(V_0\) (0.5 Vp-p) yog ces amplified nrog ib tug tshwj xeeb xov tooj cua zaus (RF) amplifier (Mariachi Oy, Turku, Finland).Poob amplified voltage \({V_I}\) los ntawm RF amplifier nrog cov zis impedance ntawm 50 ohms yog pub rau lub transformer ua rau hauv lub koob qauv nrog input impedance ntawm 50 ohms.Langevin transducers (pem hauv ntej thiab nram qab hnyav-duty multilayer piezoelectric transducers) yog siv los tsim cov tshuab tsis muaj zog.Cov kev cai RF amplifier yog nruab nrog dual-channel sawv nthwv dej zog qhov ntsuas (SWR) meter uas sau qhov xwm txheej \({V_I}\) thiab cuam tshuam lub zog hluav taws xob \(V_R\) hauv analog-to-digital (AD) hom.nrog tus nqi piv txwv ntawm 300 kHz Converter (analogue Discovery 2).Lub teeb liab excitation yog amplitude modulated thaum pib thiab thaum kawg kom tsis txhob overloading lub amplifier input nrog transients.
Siv cov ntawv kev cai siv hauv MATLAB, qhov zaus teb ua haujlwm (FRF), piv txwv li \(\tilde{H}(f)\), tau kwv yees offline siv ob-channel sinusoidal cheb ntsuas txoj kev (Fig. 4), uas xav tias linearity hauv lub sijhawm.invariant qhov system.Tsis tas li ntawd, 20 mus rau 40 kHz band pass lim yog siv los tshem tawm tej yam tsis xav tau ntawm lub teeb liab.Xa mus rau txoj kev xav ntawm cov kab xa mus, qhov no \(\tilde{H}(f)\) yog sib npaug rau qhov voltage reflection coefficient, piv txwv li \(\rho _{V} \equiv {V_R}/{V_I}\ ) \) reduces to \({V_R}^2 /{V_I}^2\) equals \(|\rho _{V}|^2\).Nyob rau hauv rooj plaub uas tus nqi hluav taws xob kiag li yuav tsum tau, qhov teeb meem fais fab \(P_I\) thiab reflected hwj chim \(P_R\) fais fab (W) raug xam los ntawm kev noj cov nqi rms (rms) ntawm cov voltage, piv txwv li.rau txoj kab sib kis nrog sinusoidal excitation \( P = {V}^2/(2Z_0)\)26, qhov twg \(Z_0\) yog sib npaug rau 50 \(\Omega\).Lub zog hluav taws xob muab rau lub load \(P_T\) (piv txwv li, qhov nruab nrab nruab nrab) tuaj yeem suav tau raws li \(|P_I – P_R |\) (W RMS), nrog rau kev hloov pauv hluav taws xob (PTE) thiab feem pua ​​( %) tuaj yeem txiav txim siab seb qhov zoo li cas muab, yog li 27:
Lub acicular modal frequencies \(f_{1-3}\) (kHz) thiab lawv cov hloov fais fab sib txuas \(\text {PTE}_{1{-}3} \) ces kwv yees siv FRF.FWHM (\(\text {FWHM}_{1{-}3}\), Hz) kwv yees ncaj qha los ntawm \(\text {PTE}_{1{-}3}\), from Table 1 A one-sided linear spectrum yog tau ntawm qhov piav qhia modal zaus \(f_{1-3}\).
Kev ntsuas ntawm cov lus teb zaus (AFC) ntawm cov qauv koob.Ib qho kev ntsuas qhov sib nqus ntawm ob-channel 25,38 yog siv kom tau txais cov lus teb zaus \(\tilde{H}(f)\) thiab nws cov lus teb impulse H(t).\({\mathcal {F}}\) thiab \({\mathcal {F}}^{-1}\) sawv cev rau Fourier transform ntawm digital truncation thiab nws inverse, feem.\(\tilde{G}(f)\) txhais tau tias cov khoom ntawm ob lub cim nyob rau hauv lub zaus domain, eg \(\tilde{G}_{XrX}\) txhais tau tias tus inverse scan khoom\(\tilde{X} r (f)\) thiab poob voltage \(\tilde{X}(f)\) raws.
Raws li pom hauv daim duab 5, lub koob yees duab ceev (Phantom V1612, Vision Research Inc., NJ, USA) yog nruab nrog lub lens macro (MP-E 65mm, \(f\)/2.8, 1-5\).(\times\), Canon Inc., Tokyo, Nyiv, los sau cov ntsiab lus deflections thaum khoov excitation (ib zaus, nruam sinusoid) ntawm zaus ntawm 27.5-30 kHz.Txhawm rau tsim daim duab duab ntxoov ntxoo, lub caij txias ntawm lub siab siv dawb LED (ib feem naj npawb: 4052899910881, LED dawb, 3000 K, 4150 lm, Osram Opto Semiconductors GmbH, Regensburg, Lub teb chaws Yelemees) tau muab tso rau hauv qab ntawm lub koob.
Saib pem hauv ntej ntawm kev sim teeb tsa.Qhov tob yog ntsuas los ntawm qhov chaw nruab nrab.Cov qauv koob yog clamped thiab mounted ntawm lub rooj tsav tsheb hloov tsheb.Siv lub koob yees duab ceev ceev nrog lub lens loj (5\(\x\)) los ntsuas oblique lub kaum sab xis sib txawv.Tag nrho qhov ntev yog nyob rau hauv millimeters.
Rau txhua hom koob bevel, peb tau sau 300 ntas ntawm lub koob yees duab siab ceev ntsuas 128 \(\x\) 128 pixels, txhua qhov kev daws teeb meem ntawm 1/180 mm (\(\ approx) 5 µm), nrog rau lub sijhawm daws teeb meem ntawm 310,000 ntas ib ob.Raws li pom nyob rau hauv daim duab 6, txhua tus ncej (1) yog cropped (2) xws li hais tias lub ntsis ntawm rab koob yog nyob rau hauv kab kawg (hauv qab) ntawm tus ncej, thiab cov histogram ntawm daim duab (3) yog xam, yog li tus Canny. Cov theem pib ntawm 1 thiab 2 tuaj yeem txiav txim siab.Tom qab ntawd siv Canny edge detection 28(4) nrog Sobel tus neeg teb xov tooj 3 \(\times\) 3 thiab suav txoj haujlwm rau cov tsis-hypotenuse pixels (labeled \(\mathbf {\times }\)) tsis muaj cavitation 300 lub sij hawm cov kauj ruam.Txhawm rau txiav txim siab qhov ntau ntawm cov ntsiab lus deflection, suav cov derivative (siv lub hauv paus sib txawv algorithm) (6) thiab txiav txim siab lub thav duab (7) uas muaj qhov siab tshaj plaws hauv zos (xws li ncov) ntawm deflection.Tom qab kev tshuaj xyuas qhov pom ntawm lub cavitation-dawb ntug, ib khub ntawm thav ntawv (los yog ob lub thav duab nrog lub sijhawm ib nrab ntawm lub sijhawm) raug xaiv (7) thiab qhov deflection ntawm lub ntsis tau ntsuas (ntaus li \(\mathbf {\times }) \)).Cov saum toj no yog siv hauv Python (v3.8, Python Software Foundation, python.org) siv OpenCV Canny edge detection algorithm (v4.5.1, qhib qhov khoos phis tawj tsis pom kev, opencv.org).Thaum kawg, qhov deflection fais fab tuag (DPR, µm / W) yog xam raws li qhov piv ntawm lub ncov-rau-peak deflection rau lub zog xa hluav taws xob \(P_T\) (Wrms).
Siv 7-kauj ruam algorithm (1-7), suav nrog cropping (1-2), Canny edge detection (3-4), xam, ntsuas pixel txoj hauj lwm ntawm lub ntsis deflection ntug siv ib tug series ntawm thav ntawv coj los ntawm high- ceev lub koob yees duab ntawm 310 kHz (5) thiab nws lub sij hawm derivative (6), thiab, thaum kawg, qhov ntau yam ntawm lub ntsis deflection yog ntsuas ntawm visually check khub ntawm thav ntawv (7).
Ntsuas hauv huab cua (22.4-22.9 ° C), dej deionized (20.8-21.5 ° C) thiab 10% (w/v) aqueous ballistic gelatin (19.7-23.0 ° C , \(\text {Honeywell}^{ \text { TM}}\) \(\text {Fluka}^{\text {TM}}\) Bovine and Pork Bone Gelatin for Type I Ballistic Analysis, Honeywell International, North Carolina, USA).Kev ntsuas kub tau ntsuas nrog K-hom thermocouple amplifier (AD595, Analog Devices Inc., MA, USA) thiab K-hom thermocouple (Fluke 80PK-1 Bead Probe No. 3648 type-K, Fluke Corporation, Washington, USA).Siv lub tshuab ntsug ntsug Z-axis theem (8MT50-100BS1-XYZ, Standa Ltd., Vilnius, Lithuania) los ntsuas qhov tob ntawm cov xov xwm saum npoo (teem raws li keeb kwm ntawm Z-axis) nrog kev daws teeb meem ntawm 5 µm ib kauj ruam.
Txij li cov qauv loj me me (n = 5) thiab qhov qub tsis tuaj yeem xav tau, ob qhov piv txwv ob-tailed Wilcoxon rank sum test (R, v4.0.3, R Foundation for Statistical Computing, r-project.org) tau siv. los sib piv tus nqi ntawm variance koob taub rau ntau yam bevels.Peb qhov kev sib piv tau ua rau txhua txoj kab nqes, yog li kev kho Bonferroni tau siv nrog kev hloov kho qhov tseem ceeb ntawm 0.017 thiab qhov yuam kev ntawm 5%.
Kev siv yog ua rau daim duab 7 hauv qab no.Ntawm 29.75 kHz, qhov nkhaus ib nrab wavelength (\(\lambda _y/2\)) ntawm 21-gauge koob yog \(\ approximately) 8 hli.Txoj kev khoov wavelength txo qis raws txoj kab nqes thaum nws mus txog qhov kawg.Nyob rau ntawm lub ntsis \(\lambda _y/2\) muaj stepped bevels ntawm 3, 1 thiab 7 mm, ntsig txog, rau zoo tib yam lancets (a), asymmetric (b) thiab axisymmetric (c).Yog li, qhov no txhais tau hais tias lub lancet yuav txawv ntawm \(\txog\) 5 hli (vim qhov tseeb tias ob lub dav hlau ntawm lancet tsim ib qho taw tes ntawm 29.30), txoj kab nqes asymmetrical yuav txawv ntawm 7 hli, thiab txoj kab nqes symmetrical. ua 1mm.Axisymmetric slopes (qhov nruab nrab ntawm lub ntiajteb txawj nqus tseem zoo ib yam, yog li tsuas yog cov phab ntsa thickness hloov raws txoj kab nqes).
Daim ntawv thov kev kawm FEM ntawm 29.75 kHz thiab qhov sib npaug.(1) Xam qhov hloov pauv ib nrab-yoj (\(\lambda _y/2\)) rau lancet (a), asymmetric (b) thiab axisymmetric (c) oblique geometry (raws li hauv daim duab 1a, b, c).).Qhov nruab nrab \(\lambda_y/2\) rau lancet, asymmetric, thiab axisymmetric slopes yog 5.65, 5.17, thiab 7.52 hli, raws li.Nco ntsoov tias cov tuab tuab rau asymmetric thiab axisymmetric bevels yog txwv rau \(\ approx) 50 µm.
Peak mobility \(|\tilde{Y}_{v_yF_y}|\) yog ib qho kev sib xyaw ua ke ntawm qhov ntev ntawm lub raj ntev (TL) thiab qhov ntev inclination (BL) (Fig. 8, 9).Rau ib tug pa lancet, txij li thaum nws loj yog tsau, qhov zoo tshaj plaws TL yog \(\approx\) 29.1 hli (Fig. 8).Rau asymmetric thiab axisymmetric slopes (Fig. 9a, b, ntsig txog), txoj kev tshawb FEM suav nrog BL ntawm 1 txog 7 hli, yog li qhov zoo tshaj plaws TL ranges yog los ntawm 26.9 mus rau 28.7 mm (ntau 1.8 mm) thiab los ntawm 27.9 mus rau 29.2 mm (ntau 1.3 hli).)), raws li.Rau asymmetric slopes (Fig. 9a), qhov zoo tshaj plaws TL nce linearly, ncav ib toj siab ntawm BL 4 hli, thiab ces sharply txo los ntawm BL 5 mus rau 7 hli.Rau axisymmetric slopes (Fig. 9b), qhov zoo tshaj plaws TL nce linearly nrog BL elongation thiab thaum kawg stabilizes BL ntawm 6 mus rau 7 hli.Ib qho kev kawm txuas ntxiv ntawm axisymmetric slopes (Fig. 9c) tau pom ntau qhov sib txawv ntawm qhov zoo tshaj plaws TLs nyob ntawm \(\kwv yees) 35.1–37.1 mm.Rau tag nrho cov BLs, qhov kev ncua deb ntawm ob pawg ntawm kev pom zoo TLs yog \(\approx\) 8 hli (sib npaug rau \(\lambda _y/2\)).
Lancet kis tau tus mob ntawm 29.75 kHz.Lub koob raj tau flexed ntawm qhov zaus ntawm 29.75 kHz, qhov kev vibration tau ntsuas qhov kawg thiab qhia raws li tus nqi ntawm cov neeg kho tshuab txav mus los (dB txheeb ze rau tus nqi siab tshaj) rau TL 26.5-29.5 hli (0.1 hli kauj ruam).
Cov kev tshawb fawb Parametric ntawm FEM ntawm qhov zaus ntawm 29.75 kHz qhia tau hais tias qhov kev hloov pauv ntawm cov lus qhia axisymmetric tsis tshua cuam tshuam los ntawm kev hloov pauv ntawm qhov ntev ntawm lub raj dua li nws cov asymmetric counterpart.Bevel length (BL) thiab yeeb nkab ntev (TL) kev tshawb fawb rau asymmetric (a) thiab axisymmetric (b, c) bevel geometries nyob rau hauv ntau zaus domain kev tshawb fawb siv FEM ( ciam teb tej yam kev mob yog qhia nyob rau hauv daim duab 2).(a, b) TL ranged ntawm 26.5 mus rau 29.5 hli (0.1 hli kauj ruam) thiab BL 1-7 hli (0.5 hli kauj ruam).(c) Extended axisymmetric oblique lub kaum sab xis kawm suav nrog TL 25-40mm (0.05mm kauj ruam) thiab 0.1-7mm (0.1mm kauj ruam) uas qhia txog qhov xav tau piv \(\lambda_y/2\) xoob tsiv ciam teb rau ib qho kev txaus siab.
Cov qauv koob muaj peb lub ntuj frequencies \(f_{1-3}\) muab faib ua qis, nruab nrab thiab siab modal cheeb tsam raws li qhia nyob rau hauv Table 1. PTE loj yog qhia nyob rau hauv daim duab 10 thiab ces soj ntsuam nyob rau hauv daim duab 11. Hauv qab no yog cov Cov txiaj ntsig rau txhua qhov chaw modal:
Cov ntaub ntawv sau tseg tam sim no lub zog hloov hluav taws xob (PTE) amplitudes tau txais kev siv sinusoidal excitation nrog swept zaus ntawm qhov tob ntawm 20 mm rau ib lub lancet (L) thiab axisymmetric slopes AX1-3 hauv huab cua, dej thiab gelatin.Ib sab spectrum yog qhia.Qhov ntsuas zaus teb (300 kHz tus qauv tus nqi) yog qhov tsawg-dhau lim thiab tom qab ntawd downsampled los ntawm ib qho ntawm 200 rau kev tshuaj ntsuam xyuas.Lub teeb liab-rau-nruab piv yog \(\le\) 45 dB.PTE theem (liab dotted kab) yog qhia nyob rau hauv degrees (\(^{\circ}\)).
Lub modal teb kev soj ntsuam yog qhia nyob rau hauv daim duab 10 (txhais tau tias ± tus qauv sib txawv, n = 5) rau L thiab AX1-3 slopes hauv huab cua, dej, thiab 10% gelatin (20 hli qhov tob) nrog (sab saum toj) peb thaj tsam modal (tsawg , medium, siab).), thiab lawv qhov sib thooj modal frequencies\(f_{1-3}\) (kHz), (nruab nrab) zog efficiency\(\text {PTE}_{1{-}3 }\) siv cov qauv tsim.(4) thiab (hauv qab) yog tag nrho qhov dav ntawm ib nrab ntawm qhov siab tshaj plaws ntsuas tus nqi \(\text {FWHM}_{1{-}3}\) (Hz), feem.Nco ntsoov tias thaum kaw qhov qis PTE, piv txwv li nyob rau hauv rooj plaub ntawm AX2 txoj kab nqes, qhov kev ntsuas bandwidth raug tshem tawm, \(\text {FWHM}_{1}\).Qhov \(f_2\) hom yog suav hais tias yog qhov tsim nyog tshaj plaws rau kev sib piv cov deflection ntawm inclined dav hlau, raws li nws qhia tau hais tias lub siab tshaj plaws ntawm lub hwj chim hloov efficiency (\(\text {PTE}_{2}\)), mus txog rau 99%.
Thawj thaj tsam modal: \(f_1\) tsis nyob ntawm ntau yam ntawm cov xov xwm tso, tab sis nyob ntawm bevel geometry.\(f_1\) txo qis nrog qis bevel ntev (27.1, 26.2 thiab 25.9 kHz rau AX1-3, raws li, hauv huab cua).Cov cheeb tsam nruab nrab \(\text {PTE}_{1}\) thiab \(\text {FWHM}_{1}\) yog \(\approx\) 81% thiab 230 Hz feem.\(\text {FWHM}_{1}\) yog qhov siab tshaj hauv gelatin los ntawm Lancet (L, 473 Hz).Nco ntsoov tias \(\text {FWHM}_{1}\) rau AX2 hauv gelatin tsis tuaj yeem kwv yees vim qhov tsawg ntawm cov lus teb ntau zaus.
Qhov thib ob modal cheeb tsam: \(f_2\) nyob ntawm hom muab tshuaj txhuam thiab bevel xov xwm.Nyob rau hauv huab cua, dej thiab gelatin, qhov nruab nrab \(f_2\) qhov tseem ceeb yog 29.1, 27.9 thiab 28.5 kHz, feem.PTE rau thaj tsam modal no kuj tau mus txog 99%, qhov siab tshaj plaws ntawm txhua pawg ntsuas, nrog rau thaj tsam nruab nrab ntawm 84%.Qhov nruab nrab thaj tsam \(\text {FWHM}_{2}\) yog \(\approx\) 910 Hz.
Thib peb modal cheeb tsam: \(f_3\) Qhov zaus nyob ntawm hom kev ntxig nruab nrab thiab bevel.Qhov nruab nrab \(f_3\) qhov tseem ceeb yog 32.0, 31.0 thiab 31.3 kHz hauv huab cua, dej thiab gelatin, feem.\(\text {PTE}_{3}\) muaj ib cheeb tsam nruab nrab ntawm \(\approximately\) 74%, qhov qis tshaj ntawm ib cheeb tsam.Lub cheeb tsam nruab nrab \(\text {FWHM}_{3}\) yog \(\approximately\) 1085 Hz, uas yog siab tshaj qhov thib ib thiab thib ob cheeb tsam.
Cov hauv qab no yog hais txog Fig.12 thiab Table 2. Lub lancet (L) deflected feem ntau (nrog rau qhov tseem ceeb rau txhua lub tswv yim, \(p<\) 0.017) nyob rau hauv ob qho tib si huab cua thiab dej (Fig. 12a), ua tiav qhov siab tshaj plaws DPR (txog 220 µm / W hauv huab cua). 12 thiab Table 2. Lub lancet (L) deflected feem ntau (nrog rau qhov tseem ceeb rau txhua lub tswv yim, \(p<\) 0.017) nyob rau hauv ob qho tib si huab cua thiab dej (Fig. 12a), ua tiav qhov siab tshaj plaws DPR (txog 220 µm / W hauv huab cua). Следующее относится к рисунку 12 и таблице 2. Ланцет (L) отклонялся больше всего (с высокой знкьси мон высокой знкьси мон <\) 0,017) как в воздухе, так и в воде (рис. 12а), достигая самого высокого DPR . Cov nram qab no siv tau rau daim duab 12 thiab Table 2. Lancet (L) deflected feem ntau (nrog qhov tseem ceeb tshaj plaws rau txhua lub tswv yim, \(p<\) 0.017) nyob rau hauv ob qho tib si huab cua thiab dej (Fig. 12a), ua tiav qhov siab tshaj plaws DPR .(txog 220 μm / W hauv huab cua).Kev siv yog ua rau daim duab 12 thiab Table 2 hauv qab no.柳叶刀(L) 在空气和水中(图12a)中偏转最大(对所有尖端具有高度意义,\(p<\) 0.017,宀縎,宀縎220 µm / W).柳叶刀(L) muaj qhov siab tshaj plaws deflection hauv huab cua thiab dej (图12a) (对所述尖端是对尖端是是电影, \(p<\) 0.017), thiab ua tiav qhov siab tshaj DPR (txog 2μm / 2. W hauv huab cua). Ланцет (L) имеет наибольшее отклонение (весьма значимое для всех наконечников, \(p<\) 0,017) в воздухе (2 с да та духе и 2 ого высокого DPR (до 220 мкм/Вт в воздухе). Lancet (L) muaj qhov sib txawv loj tshaj plaws (tseem ceeb heev rau txhua lub tswv yim, \(p<\) 0.017) hauv huab cua thiab dej (Fig. 12a), ncav cuag qhov siab tshaj plaws DPR (txog 220 µm / W hauv huab cua). Hauv huab cua, AX1 uas muaj siab dua BL, deflected siab dua AX2–3 (nrog qhov tseem ceeb, \(p<\) 0.017), thaum AX3 (uas muaj qis tshaj BL) deflected ntau tshaj AX2 nrog DPR ntawm 190 µm / W. Hauv huab cua, AX1 uas muaj siab dua BL, deflected siab dua AX2–3 (nrog qhov tseem ceeb, \(p<\) 0.017), thaum AX3 (uas muaj qis tshaj BL) deflected ntau tshaj AX2 nrog DPR ntawm 190 µm / W. В воздухе AX1 с более высоким BL отклонялся выше, чем AX2–3 (со значимостью \(p<\) 0,017), тогда каклсяком (смни каклсяком) больше, чем AX2 с DPR 190 мкм/Вт. Hauv huab cua, AX1 nrog siab dua BL deflected siab dua AX2-3 (nrog qhov tseem ceeb \(p<\) 0.017), whereas AX3 (nrog qis tshaj BL) deflected ntau tshaj AX2 nrog DPR 190 µm / W.在空气中,具有较高BL的AX1 偏转高于AX2-3(具有显着性,\(p<\) 0.017),而AX3(具有最低BL)的偎0µm Hauv huab cua, qhov deflection ntawm AX1 nrog siab dua BL yog siab dua li ntawm AX2-3 (qhov tseem ceeb, \(p<\) 0.017), thiab deflection ntawm AX3 (nrog qis tshaj BL) yog siab dua li ntawm AX2, DPR yog 190 µm/W. В воздухе AX1 с более высоким BL имеет большее отклонение, чем AX2-3 (значимо, \(p<\) 0,017), тогды BL см (3 тогда ка смм) ольшее отклонение, чем AX2 с DPR 190 мкм/Вт. Hauv huab cua, AX1 nrog siab dua BL muaj qhov sib txawv ntau dua AX2-3 (qhov tseem ceeb, \(p<\) 0.017), whereas AX3 (nrog qis tshaj BL) muaj ntau dua deviation dua AX2 nrog DPR ntawm 190 μm / W. Hauv dej ntawm 20 hli, tsis muaj qhov sib txawv tseem ceeb (\(p>\) 0.017) tau pom nyob rau hauv deflection thiab PTE rau AX1–3. Hauv dej ntawm 20 hli, tsis muaj qhov sib txawv tseem ceeb (\(p>\) 0.017) tau pom nyob rau hauv deflection thiab PTE rau AX1–3. В воде на глубине 20 мм достоверных различий (\(p>\) 0,017) по прогибу и ФТР для AX1–3 не обнаружено. Hauv dej ntawm qhov tob ntawm 20 hli, qhov sib txawv tseem ceeb (\(p>\) 0.017) hauv deflection thiab FTR tau kuaj pom rau AX1–3.在20 mm 的水中,AX1-3 的挠度和PTE 没有显着差异(\(p>\) 0.017). Hauv 20 hli dej, tsis muaj qhov sib txawv ntawm AX1-3 thiab PTE (\(p>\) 0.017). На глубине 20 мм прогиб и PTE AX1-3 существенно не отличались (\(p>\) 0,017). Ntawm qhov tob ntawm 20 hli qhov deflection thiab PTE AX1-3 tsis txawv qhov txawv (\(p>\) 0.017).Cov theem ntawm PTE hauv dej (90.2–98.4%) feem ntau siab dua hauv huab cua (56–77.5%) (Fig. 12c), thiab qhov tshwm sim ntawm cavitation tau sau tseg thaum lub sijhawm sim hauv dej (Daim duab 13, saib ntxiv. cov ntaub ntawv).
Ntsis dabtsi yog khoov amplitude ntsuas (txhais tau tias ± tus qauv sib txawv, n = 5) rau L thiab AX1-3 chamfers hauv huab cua thiab dej (qhov tob 20 hli) qhia txog cov txiaj ntsig ntawm kev hloov chamfer geometry.Cov kev ntsuas tau tau siv tas li ib zaus sinusoidal excitation.(a) Peak deviation (\(u_y\vec {j}\))) ntawm vertex, ntsuas ntawm (b) lawv qhov sib txawv modal frequencies \(f_2\).(c) Fais fab kis tau zoo (PTE, rms, %) raws li kev sib npaug.(4) thiab (d) Deviation zog yam (DPR, µm/W) xam raws li qhov siab tshaj deviation thiab xa hwj chim \(P_T\) (Wrms).
Cov duab ntxoov ntxoo ntawm lub koob yees duab siab ceev uas qhia tag nrho cov deflection ntawm lancet taub (ntsuab thiab liab dotted kab) ntawm lancet (L) thiab axisymmetric tip (AX1-3) hauv dej (qhov tob 20mm), ib nrab voj voog, tsav zaus \(f_2\) (ntau zaus 310 kHz sampling).Cov duab ntes greyscale muaj qhov ntev ntawm 128 × 128 pixels nrog lub pixel loj ntawm \(\ kwv yees) 5 µm.Cov yeeb yaj kiab tuaj yeem pom hauv cov ntaub ntawv ntxiv.
Yog li, peb tau ua qauv kev hloov pauv hauv kev khoov wavelength (Daim duab 7) thiab suav cov neeg kho tshuab kev txav mus los rau cov pa lanceolate, asymmetric, thiab axial ua ke ntawm lub raj ntev thiab bevel (Fig. 8, 9).Symmetrical beveled geometry.Raws li yav tas los, peb kwv yees qhov zoo tshaj plaws tip-to-weld nrug yog 43 mm (los yog \(\approx\) 2.75\(\lambda_y\) ntawm 29.75 kHz) raws li qhia hauv daim duab 5, thiab fabricated peb axisymmetric bevels nrog. txawv bevel lengths.Peb mam li qhia lawv cov lus teb zaus piv rau cov pa lancets hauv huab cua, dej, thiab 10% (w / v) ballistic gelatin (Figures 10, 11) thiab txiav txim siab qhov zoo tshaj plaws rau kev sib piv tilt deflection hom.Thaum kawg, peb ntsuas qhov taw qhia deflection los ntawm khoov nthwv dej hauv huab cua thiab dej ntawm qhov tob ntawm 20 hli thiab ntsuas qhov kev hloov hluav taws xob hloov hluav taws xob (PTE, %) thiab deflection fais fab tuag (DPR, µm / W) ntawm qhov nruab nrab txhaj tshuaj rau txhua qhov qaij.hom (Fig. 12).
Cov txiaj ntsig tau pom tias qhov qaij axis ntawm lub geometry cuam tshuam rau qhov kev sib txawv ntawm lub taub hau.Lub lancet muaj qhov curvature siab tshaj plaws thiab tseem yog qhov siab tshaj DPR piv rau axisymmetric bevel, thaum lub axisymmetric bevel muaj qhov sib txawv me me (Fig. 12). Lub axis-symmetric 4 hli bevel (AX1) muaj qhov ntev tshaj plaws bevel ntev, ua tiav cov ntaub ntawv tseem ceeb tshaj plaws deflection hauv huab cua (\(p <0.017\), Table 2), piv rau lwm cov koob axi-symmetric (AX2–3), tab sis tsis muaj qhov sib txawv tseem ceeb tau pom, thaum lub koob tau muab tso rau hauv dej. Lub axis-symmetric 4 hli bevel (AX1) muaj qhov ntev tshaj plaws bevel ntev, ua tiav cov ntaub ntawv tseem ceeb tshaj plaws deflection hauv huab cua (\(p <0.017\), Table 2), piv rau lwm cov koob axi-symmetric (AX2–3), tab sis tsis muaj qhov sib txawv tseem ceeb tau pom, thaum lub koob tau muab tso rau hauv dej. Осесиметричный скос 4 мм (AX1), имеющий наибольшую длину скоса, достиг статистически значимого наиболь p <0,017\), таблица 2) по сравнению с другими осесимметричными иглами (AX2–3). Axisymmetric bevel 4 mm (AX1), muaj qhov ntev bevel ntev tshaj plaws, ua tiav qhov kev sib txawv tseem ceeb hauv huab cua (\(p <0.017\), Table 2) piv rau lwm cov koob axisymmetric (AX2–3).tab sis qhov sib txawv tseem ceeb tsis tau pom thaum muab rab koob rau hauv dej.与其他轴对称针(AX2-3) 相比,具有最长斜角长度的轴对称4 mm 斜角(AX1) 在空气中宾轮了空气中宾衰了空气中宾衰。 (\(p <0.017\),表2), 但当将针头放入水中时,没有观察到显着差异. Piv nrog rau lwm cov koob axially symmetrical (AX2-3), nws muaj lub kaum sab xis ntev tshaj plaws ntawm 4 hli axially symmetrical (AX1) hauv huab cua, thiab nws tau ua tiav qhov tseem ceeb tshaj plaws deflection (\(p <0.017\), Table 2) , tab sis thaum lub koob tau muab tso rau hauv dej, tsis muaj qhov sib txawv tseem ceeb. Осесиметричный скос 4 мм (AX1) с наибольшей длиной скоса обеспечивает статистически зночимое млькси мотначимое млькси мотначимое мльксим по сравнению с другими осесимметричными иглами (AX2-3) (\(p < 0,017\), таблица 2), но существоенной разни Txoj kab nqes axisymmetric nrog txoj kab nqes ntev tshaj plaws ntawm 4 hli (AX1) tau muab qhov tseem ceeb tshaj plaws ntawm qhov sib txawv ntawm huab cua piv rau lwm qhov axisymmetric slopes (AX2-3) (\(p <0.017\), Table 2), tab sis tsis muaj tseem ceeb sib txawv.yog pom thaum koob muab tso rau hauv dej.Yog li, ntev bevel ntev tsis muaj qhov pom tseeb zoo nyob rau hauv cov nqe lus ntawm lub ncov qaum deflection.Raws li qhov no mus rau hauv tus account, nws hloov tawm hais tias txoj kab nqes geometry, uas tau tshawb xyuas hauv qhov kev tshawb fawb no, muaj kev cuam tshuam ntau dua ntawm qhov amplitude deflection tshaj qhov ntev ntawm txoj kab nqes.Qhov no tuaj yeem cuam tshuam nrog kev khoov nruj, piv txwv li, nyob ntawm cov khoom siv khoov thiab tag nrho cov thickness ntawm rab koob siv.
Hauv kev sim kev tshawb fawb, qhov loj ntawm qhov cuam tshuam flexural yoj cuam tshuam los ntawm cov ciam teb ntawm lub ntsis.Thaum cov koob taub tau muab tso rau hauv dej thiab gelatin, \(\text {PTE}_{2}\) nruab nrab \(\approx\) 95% thiab \(\text {PTE}_{2}\) nruab nrab cov nqi yog 73% thiab 77% (\text {PTE}_{1}\) thiab \(\text {PTE}_{3}\), raws li (Fig. 11).Qhov no qhia tau hais tias qhov siab tshaj plaws hloov ntawm acoustic zog mus rau qhov nruab nrab casting (piv txwv li, dej los yog gelatin) tshwm sim ntawm \(f_2\).Cov cwj pwm zoo sib xws tau pom nyob rau hauv ib txoj kev tshawb fawb yav dhau los uas siv cov cuab yeej siv yooj yim ntawm cov zaus ntawm 41-43 kHz, qhov twg cov kws sau ntawv tau pom qhov kev cuam tshuam qhov hluav taws xob cuam tshuam nrog rau cov neeg kho tshuab modulus ntawm qhov nruab nrab intercalated.Qhov tob tob 32 thiab cov khoom siv kho tshuab ntawm cov ntaub so ntswg muab cov khoom siv thauj khoom ntawm rab koob thiab yog li xav tias yuav cuam tshuam rau tus cwj pwm resonant ntawm UZeFNAB.Yog li ntawd, resonance nrhiav algorithms xws li 17, 18, 33 tuaj yeem siv los ua kom zoo dua lub zog ntawm lub suab xa los ntawm lub stylus.
Khoov wavelength modeling (Fig. 7) qhia tau hais tias axisymmetric muaj ntau dua structural stiffness (ie siab dua dabtsi yog khoov stiffness) ntawm lub ntsis tshaj lancet thiab asymmetric bevel.Muab los ntawm (1) thiab siv qhov kev sib raug zoo-ntau zaus, peb kwv yees qhov khoov khov ntawm lub lancet, cov lus qhia asymmetric thiab axisymmetric raws li qhov chaw siab \(\ kwv yees) 200, 20 thiab 1500 MPa, feem.Qhov no sib raug rau (\lambda _y\) 5.3, 1.7 thiab 14.2 mm ntawm 29.75 kHz, raws li (Fig. 7a–c).Xav txog kev nyab xeeb ntawm kev kho mob ntawm USeFNAB tus txheej txheem, kev cuam tshuam ntawm geometry ntawm qhov nruj ntawm lub bevel tsim yuav tsum tau soj ntsuam34.
Txoj kev tshawb no ntawm cov tsis muaj bevel thiab qhov ntev ntawm lub raj (Daim duab 9) qhia tau hais tias qhov zoo tshaj plaws TL ntau yam rau lub asymmetric (1.8 hli) yog siab tshaj rau axisymmetric bevel (1.3 hli).Tsis tas li ntawd, qhov kev txav mus los ntawm qhov siab ntawm 4 mus rau 4.5 hli thiab los ntawm 6 mus rau 7 hli rau asymmetric thiab axisymmetric qaij, raws li (Fig. 9a, b).Qhov tseeb qhov tseeb ntawm qhov kev tshawb pom no tau qhia nyob rau hauv kev tsim kev kam rau ua, piv txwv li, qhov qis dua ntawm qhov kev pom zoo TL tuaj yeem cuam tshuam qhov xav tau ntawm qhov raug siab dua.Nyob rau tib lub sij hawm, lub yield platform muab ib tug ntau dua kam rau ua rau kev xaiv ntawm txoj kab nqes ntev ntawm ib tug muab zaus yam tsis muaj kev cuam tshuam rau lub yield.
Txoj kev tshawb no suav nrog cov kev txwv hauv qab no.Kev ntsuas ncaj qha ntawm rab koob deflection siv qhov ntsuas ntug thiab kev ntsuas siab ceev (Daim duab 12) txhais tau hais tias peb tsuas yog txwv rau cov xov xwm optically pob tshab xws li huab cua thiab dej.Peb kuj xav taw qhia tias peb tsis tau siv cov kev sim los sim simulated hloov mus rau lwm qhov, tab sis siv cov kev tshawb fawb FEM los txiav txim siab qhov ntev ntawm cov koob tsim.Los ntawm qhov pom ntawm qhov kev txwv, qhov ntev ntawm lub lancet ntawm lub taub hau mus rau lub tes tsho yog 0.4 cm ntev dua li lwm cov koob (AX1-3), saib daim duab.3b ib.Qhov no tej zaum yuav cuam tshuam rau cov lus teb modal ntawm cov qauv acicular.Tsis tas li ntawd, cov duab thiab ntim ntawm waveguide lead solder (saib daim duab 3) tuaj yeem cuam tshuam rau cov neeg kho tshuab impedance ntawm tus pin tsim, uas ua rau muaj kev ua yuam kev hauv kev siv tshuab impedance thiab khoov tus cwj pwm.
Thaum kawg, peb tau sim ua kom pom tseeb tias lub bevel geometry cuam tshuam rau tus nqi ntawm deflection hauv USeFNAB.Nyob rau hauv cov xwm txheej uas ntau dua deflection amplitude tuaj yeem muaj txiaj ntsig zoo rau cov txiaj ntsig ntawm rab koob ntawm cov ntaub so ntswg, piv txwv li, txiav kev ua haujlwm tom qab xuas nrig ntaus, ib qho lancet zoo tuaj yeem pom zoo rau USeFNAB, vim nws muab qhov loj tshaj deflection amplitude thaum tswj kom txaus rigidity. ntawm qhov kawg ntawm qhov tsim.Tsis tas li ntawd, ib txoj kev tshawb fawb tsis ntev los no tau qhia tias qhov kev hloov pauv ntau dua tuaj yeem txhim kho cov teebmeem lom neeg xws li cavitation, uas tuaj yeem pab tsim cov ntawv thov rau kev phais mob me me.Muab hais tias qhov nce ntxiv ntawm lub zog acoustic tau pom tias yuav nce biopsy tawm los ntawm USeFNAB13, ntxiv cov kev tshawb fawb ntau ntxiv ntawm cov qauv yield thiab zoo yuav tsum tau soj ntsuam cov ncauj lus kom ntxaws cov txiaj ntsig ntawm kev kawm koob geometry.
Frable, WJ Fine needle aspiration biopsy: kev tshuaj xyuas.Hmoob.Mob.14:9-28.https://doi.org/10.1016/s0046-8177(83)80042-2 (1983).


Post lub sij hawm: Oct-13-2022
WhatsApp pawg online sib tham!